RANSAC算法
谁能告诉我如何使用RANSAC算法来选择具有一定重叠部分的两幅图像中的共同特征点?问题来自于基于特征的图像拼接。
Can anybody please show me how to use RANSAC algorithm to select common feature points in two images which have a certain portion of overlap? The problem came out from feature based image stitching.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
几年前我实现了一个图像拼接器。维基百科上关于 RANSAC 的文章很好地描述了通用算法。
当使用 RANSAC 进行基于特征的图像匹配时,您想要的是找到最能将第一幅图像变换为第二幅图像的变换。这将是维基百科文章中描述的模型。
如果您已经获得了两个图像的特征,并且发现第一个图像中的哪些特征与第二个图像中的哪些特征最匹配,那么将使用类似这样的 RANSAC。
最终结果是将 image2 中的点最好地转换为 image1 的转换,这正是拼接时您想要的。
I implemented a image stitcher a couple of years back. The article on RANSAC on Wikipedia describes the general algortihm well.
When using RANSAC for feature based image matching, what you want is to find the transform that best transforms the first image to the second image. This would be the model described in the wikipedia article.
If you have already got your features for both images and have found which features in the first image best matches which features in the second image, RANSAC would be used something like this.
The end result is the transform that best tranforms the points in image2 to image1, which is exacly what you want when stitching.