统一洗牌两个 numpy 数组的更好方法

发布于 2024-10-10 13:14:06 字数 1173 浏览 8 评论 0原文

我有两个不同形状的 numpy 数组,但长度相同(主维)。我想对它们中的每一个进行洗牌,以便相应的元素继续对应——即根据它们的前导索引一致地对它们进行洗牌。

这段代码有效,并说明了我的目标:

def shuffle_in_unison(a, b):
    assert len(a) == len(b)
    shuffled_a = numpy.empty(a.shape, dtype=a.dtype)
    shuffled_b = numpy.empty(b.shape, dtype=b.dtype)
    permutation = numpy.random.permutation(len(a))
    for old_index, new_index in enumerate(permutation):
        shuffled_a[new_index] = a[old_index]
        shuffled_b[new_index] = b[old_index]
    return shuffled_a, shuffled_b

例如:

>>> a = numpy.asarray([[1, 1], [2, 2], [3, 3]])
>>> b = numpy.asarray([1, 2, 3])
>>> shuffle_in_unison(a, b)
(array([[2, 2],
       [1, 1],
       [3, 3]]), array([2, 1, 3]))

然而,这感觉笨重、低效且缓慢,并且需要制作数组的副本——我宁愿将它们就地洗牌,因为它们会很麻烦。大的。

有更好的方法来解决这个问题吗?更快的执行速度和更低的内存使用量是我的主要目标,但优雅的代码也很好。

我的另一个想法是:

def shuffle_in_unison_scary(a, b):
    rng_state = numpy.random.get_state()
    numpy.random.shuffle(a)
    numpy.random.set_state(rng_state)
    numpy.random.shuffle(b)

这有效……但这有点可怕,因为我几乎看不到它会继续有效的保证——它看起来不像那种能保证在 numpy 版本中生存的东西,例如。

I have two numpy arrays of different shapes, but with the same length (leading dimension). I want to shuffle each of them, such that corresponding elements continue to correspond -- i.e. shuffle them in unison with respect to their leading indices.

This code works, and illustrates my goals:

def shuffle_in_unison(a, b):
    assert len(a) == len(b)
    shuffled_a = numpy.empty(a.shape, dtype=a.dtype)
    shuffled_b = numpy.empty(b.shape, dtype=b.dtype)
    permutation = numpy.random.permutation(len(a))
    for old_index, new_index in enumerate(permutation):
        shuffled_a[new_index] = a[old_index]
        shuffled_b[new_index] = b[old_index]
    return shuffled_a, shuffled_b

For example:

>>> a = numpy.asarray([[1, 1], [2, 2], [3, 3]])
>>> b = numpy.asarray([1, 2, 3])
>>> shuffle_in_unison(a, b)
(array([[2, 2],
       [1, 1],
       [3, 3]]), array([2, 1, 3]))

However, this feels clunky, inefficient, and slow, and it requires making a copy of the arrays -- I'd rather shuffle them in-place, since they'll be quite large.

Is there a better way to go about this? Faster execution and lower memory usage are my primary goals, but elegant code would be nice, too.

One other thought I had was this:

def shuffle_in_unison_scary(a, b):
    rng_state = numpy.random.get_state()
    numpy.random.shuffle(a)
    numpy.random.set_state(rng_state)
    numpy.random.shuffle(b)

This works...but it's a little scary, as I see little guarantee it'll continue to work -- it doesn't look like the sort of thing that's guaranteed to survive across numpy version, for example.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(18

不即不离 2024-10-17 13:14:07

我认为最短、最简单的方法是使用 seed

random.seed(seed)
random.shuffle(x_data)
# reset the same seed to get the identical random sequence and shuffle the y
random.seed(seed)
random.shuffle(y_data)

Shortest and easiest way in my opinion, use seed:

random.seed(seed)
random.shuffle(x_data)
# reset the same seed to get the identical random sequence and shuffle the y
random.seed(seed)
random.shuffle(y_data)
眼泪都笑了 2024-10-17 13:14:07

举个例子,这就是我正在做的事情:

combo = []
for i in range(60000):
    combo.append((images[i], labels[i]))

shuffle(combo)

im = []
lab = []
for c in combo:
    im.append(c[0])
    lab.append(c[1])
images = np.asarray(im)
labels = np.asarray(lab)

With an example, this is what I'm doing:

combo = []
for i in range(60000):
    combo.append((images[i], labels[i]))

shuffle(combo)

im = []
lab = []
for c in combo:
    im.append(c[0])
    lab.append(c[1])
images = np.asarray(im)
labels = np.asarray(lab)
蘑菇王子 2024-10-17 13:14:07

我扩展了 python 的 random.shuffle() 以获取第二个参数:

def shuffle_together(x, y):
    assert len(x) == len(y)

    for i in reversed(xrange(1, len(x))):
        # pick an element in x[:i+1] with which to exchange x[i]
        j = int(random.random() * (i+1))
        x[i], x[j] = x[j], x[i]
        y[i], y[j] = y[j], y[i]

这样我就可以确保洗牌就地发生,并且函数不会太长或太复杂。

I extended python's random.shuffle() to take a second arg:

def shuffle_together(x, y):
    assert len(x) == len(y)

    for i in reversed(xrange(1, len(x))):
        # pick an element in x[:i+1] with which to exchange x[i]
        j = int(random.random() * (i+1))
        x[i], x[j] = x[j], x[i]
        y[i], y[j] = y[j], y[i]

That way I can be sure that the shuffling happens in-place, and the function is not all too long or complicated.

远山浅 2024-10-17 13:14:07

只需使用 numpy ...

首先合并两个输入数组,一维数组是 labels(y) ,二维数组是 data(x) ,然后使用 NumPy shuffle 方法对它们进行洗牌。最后分头返回。

import numpy as np

def shuffle_2d(a, b):
    rows= a.shape[0]
    if b.shape != (rows,1):
        b = b.reshape((rows,1))
    S = np.hstack((b,a))
    np.random.shuffle(S)
    b, a  = S[:,0], S[:,1:]
    return a,b

features, samples = 2, 5
x, y = np.random.random((samples, features)), np.arange(samples)
x, y = shuffle_2d(train, test)

Just use numpy...

First merge the two input arrays 1D array is labels(y) and 2D array is data(x) and shuffle them with NumPy shuffle method. Finally split them and return.

import numpy as np

def shuffle_2d(a, b):
    rows= a.shape[0]
    if b.shape != (rows,1):
        b = b.reshape((rows,1))
    S = np.hstack((b,a))
    np.random.shuffle(S)
    b, a  = S[:,0], S[:,1:]
    return a,b

features, samples = 2, 5
x, y = np.random.random((samples, features)), np.arange(samples)
x, y = shuffle_2d(train, test)
为人所爱 2024-10-17 13:14:06

您可以使用 NumPy 的数组索引

def unison_shuffled_copies(a, b):
    assert len(a) == len(b)
    p = numpy.random.permutation(len(a))
    return a[p], b[p]

这将导致创建单独的统一打乱的数组。

Your can use NumPy's array indexing:

def unison_shuffled_copies(a, b):
    assert len(a) == len(b)
    p = numpy.random.permutation(len(a))
    return a[p], b[p]

This will result in creation of separate unison-shuffled arrays.

草莓酥 2024-10-17 13:14:06
X = np.array([[1., 0.], [2., 1.], [0., 0.]])
y = np.array([0, 1, 2])
from sklearn.utils import shuffle
X, y = shuffle(X, y, random_state=0)

要了解更多信息,请参阅 http://scikit-learn.org/稳定/模块/生成/sklearn.utils.shuffle.html

X = np.array([[1., 0.], [2., 1.], [0., 0.]])
y = np.array([0, 1, 2])
from sklearn.utils import shuffle
X, y = shuffle(X, y, random_state=0)

To learn more, see http://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html

或十年 2024-10-17 13:14:06

你的“可怕”解决方案对我来说并不可怕。对两个相同长度的序列调用 shuffle() 会导致对随机数生成器的调用次数相同,而这些是 shuffle 算法中唯一的“随机”元素。通过重置状态,您可以确保对随机数生成器的调用将在第二次调用 shuffle() 时给出相同的结果,因此整个算法将生成相同的排列。

如果您不喜欢这样,另一种解决方案是将数据存储在一个数组中,而不是从一开始就存储在两个数组中,并在这个数组中创建两个视图来模拟您现在拥有的两个数组。您可以使用单个数组进行混洗,并将视图用于所有其他目的。

示例:假设数组 ab 如下所示:

a = numpy.array([[[  0.,   1.,   2.],
                  [  3.,   4.,   5.]],

                 [[  6.,   7.,   8.],
                  [  9.,  10.,  11.]],

                 [[ 12.,  13.,  14.],
                  [ 15.,  16.,  17.]]])

b = numpy.array([[ 0.,  1.],
                 [ 2.,  3.],
                 [ 4.,  5.]])

我们现在可以构造一个包含所有数据的数组:

c = numpy.c_[a.reshape(len(a), -1), b.reshape(len(b), -1)]
# array([[  0.,   1.,   2.,   3.,   4.,   5.,   0.,   1.],
#        [  6.,   7.,   8.,   9.,  10.,  11.,   2.,   3.],
#        [ 12.,  13.,  14.,  15.,  16.,  17.,   4.,   5.]])

现在我们创建模拟原始 a 的视图b

a2 = c[:, :a.size//len(a)].reshape(a.shape)
b2 = c[:, a.size//len(a):].reshape(b.shape)

a2b2的数据与c共享。要同时打乱两个数组,请使用 numpy.random.shuffle(c)。

在生产代码中,您当然会尽量避免创建原始的 ab 并立即创建 ca2b2

该解决方案可以适用于 ab 具有不同数据类型的情况。

Your "scary" solution does not appear scary to me. Calling shuffle() for two sequences of the same length results in the same number of calls to the random number generator, and these are the only "random" elements in the shuffle algorithm. By resetting the state, you ensure that the calls to the random number generator will give the same results in the second call to shuffle(), so the whole algorithm will generate the same permutation.

If you don't like this, a different solution would be to store your data in one array instead of two right from the beginning, and create two views into this single array simulating the two arrays you have now. You can use the single array for shuffling and the views for all other purposes.

Example: Let's assume the arrays a and b look like this:

a = numpy.array([[[  0.,   1.,   2.],
                  [  3.,   4.,   5.]],

                 [[  6.,   7.,   8.],
                  [  9.,  10.,  11.]],

                 [[ 12.,  13.,  14.],
                  [ 15.,  16.,  17.]]])

b = numpy.array([[ 0.,  1.],
                 [ 2.,  3.],
                 [ 4.,  5.]])

We can now construct a single array containing all the data:

c = numpy.c_[a.reshape(len(a), -1), b.reshape(len(b), -1)]
# array([[  0.,   1.,   2.,   3.,   4.,   5.,   0.,   1.],
#        [  6.,   7.,   8.,   9.,  10.,  11.,   2.,   3.],
#        [ 12.,  13.,  14.,  15.,  16.,  17.,   4.,   5.]])

Now we create views simulating the original a and b:

a2 = c[:, :a.size//len(a)].reshape(a.shape)
b2 = c[:, a.size//len(a):].reshape(b.shape)

The data of a2 and b2 is shared with c. To shuffle both arrays simultaneously, use numpy.random.shuffle(c).

In production code, you would of course try to avoid creating the original a and b at all and right away create c, a2 and b2.

This solution could be adapted to the case that a and b have different dtypes.

夜巴黎 2024-10-17 13:14:06

非常简单的解决方案:

randomize = np.arange(len(x))
np.random.shuffle(randomize)
x = x[randomize]
y = y[randomize]

两个数组 x,y 现在都以相同的方式随机洗牌

Very simple solution:

randomize = np.arange(len(x))
np.random.shuffle(randomize)
x = x[randomize]
y = y[randomize]

the two arrays x,y are now both randomly shuffled in the same way

帥小哥 2024-10-17 13:14:06

James 在 2015 年编写了一个 sklearn 解决方案,很有帮助。但他添加了一个随机状态变量,这是不需要的。在下面的代码中,自动假定 numpy 的随机状态。

X = np.array([[1., 0.], [2., 1.], [0., 0.]])
y = np.array([0, 1, 2])
from sklearn.utils import shuffle
X, y = shuffle(X, y)

James wrote in 2015 an sklearn solution which is helpful. But he added a random state variable, which is not needed. In the below code, the random state from numpy is automatically assumed.

X = np.array([[1., 0.], [2., 1.], [0., 0.]])
y = np.array([0, 1, 2])
from sklearn.utils import shuffle
X, y = shuffle(X, y)
我乃一代侩神 2024-10-17 13:14:06
from np.random import permutation
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data #numpy array
y = iris.target #numpy array

# Data is currently unshuffled; we should shuffle 
# each X[i] with its corresponding y[i]
perm = permutation(len(X))
X = X[perm]
y = y[perm]
from np.random import permutation
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data #numpy array
y = iris.target #numpy array

# Data is currently unshuffled; we should shuffle 
# each X[i] with its corresponding y[i]
perm = permutation(len(X))
X = X[perm]
y = y[perm]
流心雨 2024-10-17 13:14:06

仅使用 NumPy 将任意数量的数组就地混合在一起。

import numpy as np


def shuffle_arrays(arrays, set_seed=-1):
    """Shuffles arrays in-place, in the same order, along axis=0

    Parameters:
    -----------
    arrays : List of NumPy arrays.
    set_seed : Seed value if int >= 0, else seed is random.
    """
    assert all(len(arr) == len(arrays[0]) for arr in arrays)
    seed = np.random.randint(0, 2**(32 - 1) - 1) if set_seed < 0 else set_seed

    for arr in arrays:
        rstate = np.random.RandomState(seed)
        rstate.shuffle(arr)

并且可以像这样使用

a = np.array([1, 2, 3, 4, 5])
b = np.array([10,20,30,40,50])
c = np.array([[1,10,11], [2,20,22], [3,30,33], [4,40,44], [5,50,55]])

shuffle_arrays([a, b, c])

需要注意的一些事项:

  • 断言确保所有输入数组具有相同的长度
    他们的第一维度。
  • 数组按其第一维就地洗牌 - 没有返回任何内容。
  • 正 int32 范围内的随机种子。
  • 如果需要可重复的洗牌,可以设置种子值。

洗牌后,可以使用 np.split 分割数据或使用切片引用数据 - 具体取决于应用程序。

Shuffle any number of arrays together, in-place, using only NumPy.

import numpy as np


def shuffle_arrays(arrays, set_seed=-1):
    """Shuffles arrays in-place, in the same order, along axis=0

    Parameters:
    -----------
    arrays : List of NumPy arrays.
    set_seed : Seed value if int >= 0, else seed is random.
    """
    assert all(len(arr) == len(arrays[0]) for arr in arrays)
    seed = np.random.randint(0, 2**(32 - 1) - 1) if set_seed < 0 else set_seed

    for arr in arrays:
        rstate = np.random.RandomState(seed)
        rstate.shuffle(arr)

And can be used like this

a = np.array([1, 2, 3, 4, 5])
b = np.array([10,20,30,40,50])
c = np.array([[1,10,11], [2,20,22], [3,30,33], [4,40,44], [5,50,55]])

shuffle_arrays([a, b, c])

A few things to note:

  • The assert ensures that all input arrays have the same length along
    their first dimension.
  • Arrays shuffled in-place by their first dimension - nothing returned.
  • Random seed within positive int32 range.
  • If a repeatable shuffle is needed, seed value can be set.

After the shuffle, the data can be split using np.split or referenced using slices - depending on the application.

逆蝶 2024-10-17 13:14:06

您可以创建一个数组,如下所示:

s = np.arange(0, len(a), 1)

然后对其进行洗牌:

np.random.shuffle(s)

现在使用此作为数组的参数。相同的打乱参数返回相同的打乱向量。

x_data = x_data[s]
x_label = x_label[s]

you can make an array like:

s = np.arange(0, len(a), 1)

then shuffle it:

np.random.shuffle(s)

now use this s as argument of your arrays. same shuffled arguments return same shuffled vectors.

x_data = x_data[s]
x_label = x_label[s]
高跟鞋的旋律 2024-10-17 13:14:06

有一个众所周知的函数可以处理这个问题:

from sklearn.model_selection import train_test_split
X, _, Y, _ = train_test_split(X,Y, test_size=0.0)

只需将 test_size 设置为 0 即可避免拆分并为您提供打乱的数据。
虽然它通常用于分割训练数据和测试数据,但它也会对它们进行洗牌。
来自文档

将数组或矩阵拆分为随机训练和测试子集

包装输入验证和
next(ShuffleSplit().split(X, y)) 和应用程序将数据输入到
单个调用以分割(以及可选的子采样)数据
内线。

There is a well-known function that can handle this:

from sklearn.model_selection import train_test_split
X, _, Y, _ = train_test_split(X,Y, test_size=0.0)

Just setting test_size to 0 will avoid splitting and give you shuffled data.
Though it is usually used to split train and test data, it does shuffle them too.
From documentation

Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and
next(ShuffleSplit().split(X, y)) and application to input data into a
single call for splitting (and optionally subsampling) data in a
oneliner.

流殇 2024-10-17 13:14:06

这看起来是一个非常简单的解决方案:

import numpy as np
def shuffle_in_unison(a,b):

    assert len(a)==len(b)
    c = np.arange(len(a))
    np.random.shuffle(c)

    return a[c],b[c]

a =  np.asarray([[1, 1], [2, 2], [3, 3]])
b =  np.asarray([11, 22, 33])

shuffle_in_unison(a,b)
Out[94]: 
(array([[3, 3],
        [2, 2],
        [1, 1]]),
 array([33, 22, 11]))

This seems like a very simple solution:

import numpy as np
def shuffle_in_unison(a,b):

    assert len(a)==len(b)
    c = np.arange(len(a))
    np.random.shuffle(c)

    return a[c],b[c]

a =  np.asarray([[1, 1], [2, 2], [3, 3]])
b =  np.asarray([11, 22, 33])

shuffle_in_unison(a,b)
Out[94]: 
(array([[3, 3],
        [2, 2],
        [1, 1]]),
 array([33, 22, 11]))
蓝眼睛不忧郁 2024-10-17 13:14:06

对连接列表进行就地混排的一种方法是使用种子(可以是随机的)并使用 numpy.random.shuffle 进行混排。

# Set seed to a random number if you want the shuffling to be non-deterministic.
def shuffle(a, b, seed):
   np.random.seed(seed)
   np.random.shuffle(a)
   np.random.seed(seed)
   np.random.shuffle(b)

就是这样。这将以完全相同的方式对 a 和 b 进行洗牌。这也是就地完成的,这总是一个优点。

编辑,不要使用 np.random.seed() 而是使用 np.random.RandomState 调用

def shuffle(a, b, seed):
   rand_state = np.random.RandomState(seed)
   rand_state.shuffle(a)
   rand_state.seed(seed)
   rand_state.shuffle(b)

它时只需传入任何种子来提供随机状态:

a = [1,2,3,4]
b = [11, 22, 33, 44]
shuffle(a, b, 12345)

输出:

>>> a
[1, 4, 2, 3]
>>> b
[11, 44, 22, 33]

编辑:固定代码以重新播种随机状态

One way in which in-place shuffling can be done for connected lists is using a seed (it could be random) and using numpy.random.shuffle to do the shuffling.

# Set seed to a random number if you want the shuffling to be non-deterministic.
def shuffle(a, b, seed):
   np.random.seed(seed)
   np.random.shuffle(a)
   np.random.seed(seed)
   np.random.shuffle(b)

That's it. This will shuffle both a and b in the exact same way. This is also done in-place which is always a plus.

EDIT, don't use np.random.seed() use np.random.RandomState instead

def shuffle(a, b, seed):
   rand_state = np.random.RandomState(seed)
   rand_state.shuffle(a)
   rand_state.seed(seed)
   rand_state.shuffle(b)

When calling it just pass in any seed to feed the random state:

a = [1,2,3,4]
b = [11, 22, 33, 44]
shuffle(a, b, 12345)

Output:

>>> a
[1, 4, 2, 3]
>>> b
[11, 44, 22, 33]

Edit: Fixed code to re-seed the random state

败给现实 2024-10-17 13:14:06

假设我们有两个数组:a 和 b。

a = np.array([[1,2,3],[4,5,6],[7,8,9]])
b = np.array([[9,1,1],[6,6,6],[4,2,0]]) 

我们可以首先通过排列第一维来获得行索引,

indices = np.random.permutation(a.shape[0])
[1 2 0]

然后使用高级索引。
在这里,我们使用相同的索引来统一洗牌两个数组。

a_shuffled = a[indices[:,np.newaxis], np.arange(a.shape[1])]
b_shuffled = b[indices[:,np.newaxis], np.arange(b.shape[1])]

这相当于

np.take(a, indices, axis=0)
[[4 5 6]
 [7 8 9]
 [1 2 3]]

np.take(b, indices, axis=0)
[[6 6 6]
 [4 2 0]
 [9 1 1]]

Say we have two arrays: a and b.

a = np.array([[1,2,3],[4,5,6],[7,8,9]])
b = np.array([[9,1,1],[6,6,6],[4,2,0]]) 

We can first obtain row indices by permutating first dimension

indices = np.random.permutation(a.shape[0])
[1 2 0]

Then use advanced indexing.
Here we are using the same indices to shuffle both arrays in unison.

a_shuffled = a[indices[:,np.newaxis], np.arange(a.shape[1])]
b_shuffled = b[indices[:,np.newaxis], np.arange(b.shape[1])]

This is equivalent to

np.take(a, indices, axis=0)
[[4 5 6]
 [7 8 9]
 [1 2 3]]

np.take(b, indices, axis=0)
[[6 6 6]
 [4 2 0]
 [9 1 1]]
a√萤火虫的光℡ 2024-10-17 13:14:06

上面的大多数解决方案都有效,但是如果您有列向量,则必须首先转置它们。这是一个例子

def shuffle(self) -> None:
    """
    Shuffles X and Y
    """
    x = self.X.T
    y = self.Y.T
    p = np.random.permutation(len(x))
    self.X = x[p].T
    self.Y = y[p].T

most solutions above work, however if you have column vectors you have to transpose them first. here is an example

def shuffle(self) -> None:
    """
    Shuffles X and Y
    """
    x = self.X.T
    y = self.Y.T
    p = np.random.permutation(len(x))
    self.X = x[p].T
    self.Y = y[p].T
阳光的暖冬 2024-10-17 13:14:06

如果您想避免复制数组,那么我建议您不要生成排列列表,而是遍历数组中的每个元素,并将其随机交换到数组中的另一个位置

for old_index in len(a):
    new_index = numpy.random.randint(old_index+1)
    a[old_index], a[new_index] = a[new_index], a[old_index]
    b[old_index], b[new_index] = b[new_index], b[old_index]

。这实现了 Knuth-Fisher-Yates 洗牌算法。

If you want to avoid copying arrays, then I would suggest that instead of generating a permutation list, you go through every element in the array, and randomly swap it to another position in the array

for old_index in len(a):
    new_index = numpy.random.randint(old_index+1)
    a[old_index], a[new_index] = a[new_index], a[old_index]
    b[old_index], b[new_index] = b[new_index], b[old_index]

This implements the Knuth-Fisher-Yates shuffle algorithm.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文