还有一个逻辑

发布于 2024-10-10 12:25:25 字数 907 浏览 6 评论 0原文

出于好奇,我正在研究一个研究问题,但我不知道如何对我想到的逻辑进行编程。让我向你解释一下:

我有四个向量,例如,

v1 = 1 1 1 1
v2 = 2 2 2 2
v3 = 3 3 3 3
v4 = 4 4 4 4

我想将它们组合起来。也就是说,

v12 = v1+v2
v13 = v1+v3
v14 = v1+v4
v23 = v2+v3
v24 = v2+v4
v34 = v3+v4

做到这一步就可以了。现在的问题/技巧是,在每次迭代结束时,我将获得的向量放入黑盒函数中,它仅返回几个向量,例如 v12、v13 和 v34。现在,我想将这些向量中的每一个添加到之前未添加过的 v1、v2、v3、v4 中的一个向量。例如,v3和v4还没有添加到v12中,所以我想创建v123和v124。同样,对于所有向量,例如

v12 should become:
v123 = v12+v3
v124 = v12+v4

v13 should become:
v132 // This should not occur because I already have v123
v134 = v13+v4;

不能考虑v14、v23和v24 因为它被黑了 盒子功能,所以我们拥有的一切 可以使用的手是 v12、v13 和 v34。

v34 should become:
v341 // Cannot occur because we have 134
v342 = v34+v2

重要的是我不要一开始就一步完成所有事情。例如,我可以执行 (4 选择 3) 4C3 并完成它,但我想在每次迭代中一步一步地完成。

如果包含黑匣子功能怎么办?

I'm working on a research problem out of curiosity, and I don't know how to program the logic that I've in mind. Let me explain it to you:

I've four vectors, say for example,

v1 = 1 1 1 1
v2 = 2 2 2 2
v3 = 3 3 3 3
v4 = 4 4 4 4

I want to add them combination-wise. That is,

v12 = v1+v2
v13 = v1+v3
v14 = v1+v4
v23 = v2+v3
v24 = v2+v4
v34 = v3+v4

Till this step it is just fine. The problem/trick is now, at the end of each iteration I give the obtained vectors into a black box function, and it returns only a few of the vectors, say v12, v13 and v34. Now, I want to add each of these vectors one vector from v1, v2, v3, v4 which it hasn't added before. For example, v3 and v4 hasn't been added to v12, so I want to create v123 and v124. Similarly for all the vectors like,

v12 should become:
v123 = v12+v3
v124 = v12+v4

v13 should become:
v132 // This should not occur because I already have v123
v134 = v13+v4;

v14,v23 and v24 cannot be considered
because it was deleted in the black
box function so all we have in our
hands to work with is v12,v13 and v34.

v34 should become:
v341 // Cannot occur because we have 134
v342 = v34+v2

It is important that I do not do it all in one step at the start. Like for example, I can do (4 choose 3) 4C3 and finish it off, but I want to do it step by step at each iteration.

How do do it when the black box function is included?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

温柔戏命师 2024-10-17 12:25:25

好吧,这可能会变得更有效率,但我认为这满足了您的需要。

#include <vector>
#include <iostream>
#include <iterator>
#include <algorithm>
#include <set>
#include <map>

using namespace std;

typedef vector<int> v_t;
typedef set<int> s_t;
typedef map<s_t, v_t> m_t;
typedef vector<pair<s_t, v_t> > b_t;

// this inserts a new entry into the map with the provided key
// the value_type (vector) is generated by adding the entries in each vector
// NOTE: the first vector is passed by value (so we get a copy in the function)
// the second vector (passed by ref) is then added to it.
void insert_entry(m_t& dest, s_t& key, v_t vdest, v_t const& v2)
{
  v_t::const_iterator it2(v2.begin());
  // there is no global operator+ for vector, so you have to do something like below
  for(v_t::iterator it(vdest.begin()), end(vdest.end()); it != end && (*(it++) += *(it2++)););
  // this is just debug
  cout << "new key: " << key.size() << " : ";
  copy(key.begin(), key.end(), ostream_iterator<int>(cout, " "));
  cout << endl;
  cout << "vec: ";
  copy(vdest.begin(), vdest.end(), ostream_iterator<int>(cout, " "));
  // actual insert in to map
  // for example, key may be set<1, 2> and value is vector <3, 3, 3, 3>
  dest.insert(dest.end(), make_pair(key, vdest));
  cout << "size of dest: " << dest.size() << endl;
}

// This function generates all unique combinations of a given size and inserts them into 
// the main map
void gen_comb(size_t cmb, b_t const& base, m_t& dest)
{
  typedef m_t::iterator m_it;

  cout << "combination size: " << cmb << endl;

  // Now calculate our starting vector key size, a "key" is imply a combination of
  // vectors, e.g. v12, v23 v14 etc. in this case key size = 2 (i.e. two vectors)
  // If we need to generate combinations of size 3 (cmb=3), then we start with all
  // vectors of key size = 2 (v12, v23, v14 etc.) and add all the base (v1, v2 v3) to it
  size_t s_ksz = cmb - 1; // search key size
  cout << "search size: " << s_ksz << endl;
  // now iterate through all entries in the map
  for(m_it it(dest.begin()); it != dest.end(); ++it)
  {
    // Aha, the key size matches what we require (for example, to generate v123, we
    // need v12 (key size == 2) first
    if (it->first.size() == s_ksz)
    {
      // Now iterate through all base vectors (v1, v2, v3, v4)
      for(b_t::const_iterator v_it(base.begin()), v_end(base.end()); v_it != v_end; ++v_it)
      {
        // new key, start with the main key from map, e.g. set<1, 2>
        s_t nk(it->first.begin(), it->first.end());
        // Add the base key set<3>, reason I do it this way is that, in case you
        // that base vectors should be other than size 1 (else insert(*((*v_it)->first.begin())) should work just fine.
        nk.insert(v_it->first.begin(), v_it->first.end());
        // check if this key exists, this is the main check, this tests whether our map
        // already has a key with the same vectors (for example, set<1,2,3> == set<2,3,1> - internally set is ordered)
        m_it k_e = dest.find(nk);
        // If the key (combination of vectors) does not exist, then insert a new entry
        if (k_e == dest.end())
        {
          // new key
          insert_entry(dest, nk, it->second, v_it->second);
        }
      }
    }
  }
}

void trim(size_t depth, m_t& dest)
{
  for(m_t::iterator it(dest.begin()); it != dest.end();)
  {
    if (it->first.size() == depth && (rand() % 2))
    {
      cout << "removing key: " << depth << " : ";
      copy(it->first.begin(), it->first.end(), ostream_iterator<int>(cout, " "));
      cout << endl;
      dest.erase(it++);
    }
    else
      ++it;
  }
}

int main(void)
{
  // combination map
  m_t dest;

  // this is the set of bases
  b_t bases;
  int max_i = 4;
  for(int i = 1; i <= max_i; ++i)
  {
    v_t v(4, i);
    s_t k;
    k.insert(i);
    bases.push_back(make_pair(k, v));
  }

  // for the start, push in the bases
  dest.insert(bases.begin(), bases.end());

  // for each combination size, generate a new set of vectors and then trim that set.
  for (size_t cmb = 1; cmb <= static_cast<size_t>(max_i); ++cmb)
  {
    if (cmb > 1) gen_comb(cmb, bases, dest);
    trim(cmb, dest); // randomly remove some entries...
  }


  return 0;
}

注意:

  1. trim函数对你的黑匣子进行建模,它使用给定的密钥大小(与最近生成的组合大小相同)从主映射中删除一些条目
  2. 我不确定迭代的有效性地图并插入新条目(即它如何影响迭代器,它似乎有效,但我认为我可能遗漏了一些微妙的东西 - 现在考虑这个问题已经太晚了!)
  3. 性能,可能不会是理想的,因为您需要迭代所有键来查找搜索大小(用于组合)。
  4. 假设所有向量具有相同的大小(但这可以简单地修复)
  5. 如果您进行调试,您会发现实际代码非常小。
  6. 组合的顺序不会保留 - 不确定这是否是您需要

编辑:
好吧,现在base是一个向量,其中包含一个用于键<->向量关系的pair - 这是常数。最初它被添加到地图中,并且在初始状态下跳过gen_comb函数,仍然调用trim来删除一些条目。下一次迭代使用相同的搜索算法,但组合是使用 base 的常量集。

Okay, here goes, this probably could be made more efficient, but I think this does what you need.

#include <vector>
#include <iostream>
#include <iterator>
#include <algorithm>
#include <set>
#include <map>

using namespace std;

typedef vector<int> v_t;
typedef set<int> s_t;
typedef map<s_t, v_t> m_t;
typedef vector<pair<s_t, v_t> > b_t;

// this inserts a new entry into the map with the provided key
// the value_type (vector) is generated by adding the entries in each vector
// NOTE: the first vector is passed by value (so we get a copy in the function)
// the second vector (passed by ref) is then added to it.
void insert_entry(m_t& dest, s_t& key, v_t vdest, v_t const& v2)
{
  v_t::const_iterator it2(v2.begin());
  // there is no global operator+ for vector, so you have to do something like below
  for(v_t::iterator it(vdest.begin()), end(vdest.end()); it != end && (*(it++) += *(it2++)););
  // this is just debug
  cout << "new key: " << key.size() << " : ";
  copy(key.begin(), key.end(), ostream_iterator<int>(cout, " "));
  cout << endl;
  cout << "vec: ";
  copy(vdest.begin(), vdest.end(), ostream_iterator<int>(cout, " "));
  // actual insert in to map
  // for example, key may be set<1, 2> and value is vector <3, 3, 3, 3>
  dest.insert(dest.end(), make_pair(key, vdest));
  cout << "size of dest: " << dest.size() << endl;
}

// This function generates all unique combinations of a given size and inserts them into 
// the main map
void gen_comb(size_t cmb, b_t const& base, m_t& dest)
{
  typedef m_t::iterator m_it;

  cout << "combination size: " << cmb << endl;

  // Now calculate our starting vector key size, a "key" is imply a combination of
  // vectors, e.g. v12, v23 v14 etc. in this case key size = 2 (i.e. two vectors)
  // If we need to generate combinations of size 3 (cmb=3), then we start with all
  // vectors of key size = 2 (v12, v23, v14 etc.) and add all the base (v1, v2 v3) to it
  size_t s_ksz = cmb - 1; // search key size
  cout << "search size: " << s_ksz << endl;
  // now iterate through all entries in the map
  for(m_it it(dest.begin()); it != dest.end(); ++it)
  {
    // Aha, the key size matches what we require (for example, to generate v123, we
    // need v12 (key size == 2) first
    if (it->first.size() == s_ksz)
    {
      // Now iterate through all base vectors (v1, v2, v3, v4)
      for(b_t::const_iterator v_it(base.begin()), v_end(base.end()); v_it != v_end; ++v_it)
      {
        // new key, start with the main key from map, e.g. set<1, 2>
        s_t nk(it->first.begin(), it->first.end());
        // Add the base key set<3>, reason I do it this way is that, in case you
        // that base vectors should be other than size 1 (else insert(*((*v_it)->first.begin())) should work just fine.
        nk.insert(v_it->first.begin(), v_it->first.end());
        // check if this key exists, this is the main check, this tests whether our map
        // already has a key with the same vectors (for example, set<1,2,3> == set<2,3,1> - internally set is ordered)
        m_it k_e = dest.find(nk);
        // If the key (combination of vectors) does not exist, then insert a new entry
        if (k_e == dest.end())
        {
          // new key
          insert_entry(dest, nk, it->second, v_it->second);
        }
      }
    }
  }
}

void trim(size_t depth, m_t& dest)
{
  for(m_t::iterator it(dest.begin()); it != dest.end();)
  {
    if (it->first.size() == depth && (rand() % 2))
    {
      cout << "removing key: " << depth << " : ";
      copy(it->first.begin(), it->first.end(), ostream_iterator<int>(cout, " "));
      cout << endl;
      dest.erase(it++);
    }
    else
      ++it;
  }
}

int main(void)
{
  // combination map
  m_t dest;

  // this is the set of bases
  b_t bases;
  int max_i = 4;
  for(int i = 1; i <= max_i; ++i)
  {
    v_t v(4, i);
    s_t k;
    k.insert(i);
    bases.push_back(make_pair(k, v));
  }

  // for the start, push in the bases
  dest.insert(bases.begin(), bases.end());

  // for each combination size, generate a new set of vectors and then trim that set.
  for (size_t cmb = 1; cmb <= static_cast<size_t>(max_i); ++cmb)
  {
    if (cmb > 1) gen_comb(cmb, bases, dest);
    trim(cmb, dest); // randomly remove some entries...
  }


  return 0;
}

NOTES:

  1. the trim function models your black box which removes some entries from the main map with a given key size (same size as the most recently generated combinations)
  2. I'm not sure about the validity of iterating through the map and inserting new entries (i.e. how it impacts the iterator, it appears to work, but I think there may be something subtle that I am missing - it's far too late at night to think about that right now!)
  3. Performance, may not be ideal, as you need to iterate through all keys to find the search size (for combination).
  4. assumes that all vectors have the same size (but this can be fixed trivially)
  5. If you take out the debug, you'll see that the actual code is quite small..
  6. The order of the combination is not preserved - not sure if this is necessary for you

EDIT:
Okay now base is a vector which contains a pair for the key<->vector relationship - this is constant. Initially it is added to the map, and the gen_comb function is skipped for the initial state, trim is still called to remove some entries. Next iteration uses the same search algorithm, but the combination is with the constant set of bases.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文