基本 Scalaz 状态问题
如何使用 State
来模仿 List.zipWithIndex
的行为?到目前为止我想出的(不起作用)是:
def numberSA[A](list : List[A]) : State[Int, List[(A, Int)]] = list match {
case x :: xs => (init[Int] <* modify((_:Int) + 1)) map { s : Int => (x -> s) :: (numberSA(xs) ! s) }
case Nil => state( (i : Int) => i -> nil[(A, Int)] )
}
这是非常松散地基于 状态示例。正如我所说,它不起作用:
scala> res4
res5: List[java.lang.String] = List(one, two, three)
scala> numberSA(res4) ! 1
res6: List[(String, Int)] = List((one,1), (two,1), (three,1))
我可以通过更改 case 语句的一行来使其工作:
case x :: xs => (init[Int]) map { s : Int => (x -> s) :: (numberSA(xs) ! (s + 1)) }
但这感觉不对。有人可以帮忙吗?
编辑 - 更多的尝试让我做到了这一点
def numberSA[A](list : List[A]) : State[Int, List[(A, Int)]] = {
def single(a : A) : State[Int, List[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => List(a -> s) }
list match {
case Nil => state( (_ : Int) -> nil[(A, Int)] )
case x :: xs => (single(x) <**> numberSA(xs)) { _ ::: _ }
}
}
它可以改进吗?它可以推广到 List
以外的容器吗(如果是的话,需要什么类型类?)
编辑 2 - 我现在已经推广了它,尽管有点笨拙
def index[M[_], A](ma : M[A])
(implicit pure : Pure[M], empty : Empty[M], semigroup : Semigroup[M[(A, Int)]], foldable : Foldable[M])
: State[Int, M[(A, Int)]] = {
def single(a : A) : State[Int, M[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => pure.pure(a -> s) }
foldable.foldLeft(ma, state( (_ : Int) -> empty.empty[(A, Int)] ), { (s : State[Int, M[(A, Int)]],a : A) => (s <**> single(a)) { (x,y) => semigroup.append(x,y)} } )
}
或者非常相似:
def index[M[_] : Pure : Empty : Plus : Foldable, A](ma : M[A])
: State[Int, M[(A, Int)]] = {
import Predef.{implicitly => ??}
def single(a : A) : State[Int, M[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => ??[Pure[M]].pure(a -> s) }
??[Foldable[M]].foldLeft(ma, state( (_ : Int) -> ??[Empty[M]].empty[(A, Int)] ), { (s : State[Int, M[(A, Int)]],a : A) => (s <**> single(a)) { (x,y) => ??[Plus[M]].plus(x,y)} } )
}
How do I use State
to mimic the behaviour of List.zipWithIndex
? What I have come up with so far (which doesn't work) is:
def numberSA[A](list : List[A]) : State[Int, List[(A, Int)]] = list match {
case x :: xs => (init[Int] <* modify((_:Int) + 1)) map { s : Int => (x -> s) :: (numberSA(xs) ! s) }
case Nil => state( (i : Int) => i -> nil[(A, Int)] )
}
This is based very loosely on the state example. As I said, it does not work:
scala> res4
res5: List[java.lang.String] = List(one, two, three)
scala> numberSA(res4) ! 1
res6: List[(String, Int)] = List((one,1), (two,1), (three,1))
I can get it to work by changing a line of the case statement:
case x :: xs => (init[Int]) map { s : Int => (x -> s) :: (numberSA(xs) ! (s + 1)) }
But this just feels wrong. Can anyone help?
EDIT - more playing around has got me to this
def numberSA[A](list : List[A]) : State[Int, List[(A, Int)]] = {
def single(a : A) : State[Int, List[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => List(a -> s) }
list match {
case Nil => state( (_ : Int) -> nil[(A, Int)] )
case x :: xs => (single(x) <**> numberSA(xs)) { _ ::: _ }
}
}
Can it be improved? Can it be generalized to containers other than List
(and, if so, what typeclasses are needed?)
EDIT 2 - I have now generalized it, albeit a bit clunkily
def index[M[_], A](ma : M[A])
(implicit pure : Pure[M], empty : Empty[M], semigroup : Semigroup[M[(A, Int)]], foldable : Foldable[M])
: State[Int, M[(A, Int)]] = {
def single(a : A) : State[Int, M[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => pure.pure(a -> s) }
foldable.foldLeft(ma, state( (_ : Int) -> empty.empty[(A, Int)] ), { (s : State[Int, M[(A, Int)]],a : A) => (s <**> single(a)) { (x,y) => semigroup.append(x,y)} } )
}
Or the very similar:
def index[M[_] : Pure : Empty : Plus : Foldable, A](ma : M[A])
: State[Int, M[(A, Int)]] = {
import Predef.{implicitly => ??}
def single(a : A) : State[Int, M[(A, Int)]] = (init[Int] <* modify((_ : Int) + 1)) map { s : Int => ??[Pure[M]].pure(a -> s) }
??[Foldable[M]].foldLeft(ma, state( (_ : Int) -> ??[Empty[M]].empty[(A, Int)] ), { (s : State[Int, M[(A, Int)]],a : A) => (s <**> single(a)) { (x,y) => ??[Plus[M]].plus(x,y)} } )
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
甚至...
参见迭代器模式的本质 有关使用 State 进行遍历的更多信息。
Or even...
See The Essence of the Iterator Pattern for more on traversing with State.