延续传递风格与 monad 的比较

发布于 2024-10-09 05:40:39 字数 36 浏览 5 评论 0原文

连续传递风格 (cps) 和 monad 之间有什么区别。

What are the differences between continuation passing style (cps) and monads.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

怼怹恏 2024-10-16 05:40:39

正如函数式编程的本质中提到的:

使用 monad 编程很容易让人想起延续传递风格 (CPS),本文探讨了两者之间的关系。从某种意义上来说,它们是等价的:CPS 作为 monad 的一个特例出现,任何 monad 都可以通过改变答案类型嵌入到 CPS 中。但一元方法提供了额外的洞察力并允许更精细的控制。

这篇论文相当严谨,实际上并没有很好地阐述 CPS 和 monad 之间的关系。在这里,我尝试给出一个非正式但说明性的例子:(

注意:下面是一个新手(我自己)对 Monad 的理解,尽管写完后它看起来确实像那些高代表用户的答案之一。请这样做 考虑一下

经典的 Maybe monad

-- I don't use the do notation to make it 
-- look similar to foo below

bar :: Maybe Int
bar =
    Just 5 >>= \x ->
    Just 4 >>= \y ->
    return $ x + y

bar' :: Maybe Int
bar' =
    Just 5 >>= \x ->
    Nothing >>= \_ ->
    return $ x

GHCi> bar
Just 9
GHCi> bar'
Nothing

因此,一旦遇到 Nothing ,计算就会停止,这里没有什么新内容。让我们尝试使用 CPS 来模拟这样的单子行为:

这是我们使用 CPS 的普通 add 函数。我们在这里使用所有 Int 而不是代数数据类型,以使其更容易:

add :: Int -> Int -> (Int -> Int) -> Int
add x y k = k (x+y)

GHCi> add 3 4 id
7

注意它与 monad

foo :: Int
foo =
    add 1 2 $ \x -> -- 3
    add x 4 $ \y -> -- 7
    add y 5 $ \z -> -- 12
    z

GHCi> foo
12

OK 多么相似。假设我们希望计算上限为 10。也就是说,当下一步结果大于 10 时,任何计算都必须停止。这有点像说“Maybe 计算必须停止并返回 Nothing” 只要链中的任何值都是 Nothing),让我们看看如何通过编写“CPS 转换器”来做到这一点。

cap10 :: (Int -> Int) -> (Int -> Int)
cap10 k = \x ->
    if x <= 10 
    then 
        let x' = k x in 
        if x' <= 10 then x' else x
    else x

foo' :: Int
foo' =
    add 1 2 $ cap10 $ \x -> -- 3
    add x 4 $ cap10 $ \y -> -- 7
    add y 5 $ cap10 $ \z -> -- 12
    undefined

GHCi> foo'
7

请注意,最终返回值可能是 undefined< /code>,但这很好,因为评估在第三步停止(z)。

我们可以看到 cap10 用一些额外的逻辑“包装”了正常的延续。这与 monad 的作用非常接近——将计算与一些额外的逻辑结合在一起

(>>==) :: ((Int -> Int) -> Int) -> (Int -> Int) -> Int
m >>== k = m $ cap10 k

foo'' :: Int
foo'' =
    add 1 2 >>== \x -> -- 3
    add x 4 >>== \y -> -- 7
    add y 5 >>== \z -> -- 12
    undefined

GCHi> foo''
7

刚刚发明了 Cap10 monad!

哇!也许我们 a href="https://google.com/codesearch#A3NG3tctuIg/core/libraries/mtl/Control/Monad/Cont.hs&q=package%3aghc%20Cont">Cont的源代码,我们看到Cont

newtype Cont r a = Cont { runCont :: (a -> r) -> r }

runCont 的类型,

Cont r a -> (a -> r) -> r
((a -> r) -> r) -> (a -> r) -> r

它与我们的 >>== 的类型非常吻合

现在来实际回答这个问题

现在,在输入所有这些内容后,我重新阅读了原来的问题。 OP 要求“差异”:P

我猜差异是 CPS 为调用者提供了更多控制权,而通常 monad 中的 >>= 完全由 monad 的作者控制。

As mentioned in The essence of functional programming:

Programming with monads strongly reminiscent of continuation—passing style (CPS), and this paper explores the relationship between the two. In a sense they are equivalent: CPS arises as a special case of a monad, and any monad may be embedded in CPS by changing the answer type. But the monadic approach provides additional insight and allows a finer degree of control.

That paper is quite rigorous, and actually it doesn't quite expand on the relationship between CPS and monads. Here I attempt to give an informal, but illustrative example:

(Note: Below is an understand of Monad from a newbie (myself), though after writing it it does appear to look like one of those high-rep users' answer. Please do take it with a ton of salt)

Consider the classic Maybe monad

-- I don't use the do notation to make it 
-- look similar to foo below

bar :: Maybe Int
bar =
    Just 5 >>= \x ->
    Just 4 >>= \y ->
    return $ x + y

bar' :: Maybe Int
bar' =
    Just 5 >>= \x ->
    Nothing >>= \_ ->
    return $ x

GHCi> bar
Just 9
GHCi> bar'
Nothing

So the computation stops as soon as Nothing is encountered, nothing new here. Let's try to mimic such a monadic behavior using CPS:

Here is our vanilla add function using CPS. We are using all Int here instead of algebric data type to make it easier:

add :: Int -> Int -> (Int -> Int) -> Int
add x y k = k (x+y)

GHCi> add 3 4 id
7

Notice how similar it is to a monad

foo :: Int
foo =
    add 1 2 $ \x -> -- 3
    add x 4 $ \y -> -- 7
    add y 5 $ \z -> -- 12
    z

GHCi> foo
12

OK. Suppose that we want the computation to be capped at 10. That is, whatever computation must stop when the next step would result in a value larger than 10. This is sort of like saying "a Maybe computation must stop and return Nothing as soon as any value in the chain is Nothing). Let's see how we can do it by writing a "CPS transformer"

cap10 :: (Int -> Int) -> (Int -> Int)
cap10 k = \x ->
    if x <= 10 
    then 
        let x' = k x in 
        if x' <= 10 then x' else x
    else x

foo' :: Int
foo' =
    add 1 2 $ cap10 $ \x -> -- 3
    add x 4 $ cap10 $ \y -> -- 7
    add y 5 $ cap10 $ \z -> -- 12
    undefined

GHCi> foo'
7

Notice that the final return value can be undefined, but that is fine, because the evaluation stops at the 3rd step (z).

We can see that cap10 "wraps" the normal continuation with some extra logic. And that's very close to what monad to -- glue computations together with some extra logic.

Let's go one step further:

(>>==) :: ((Int -> Int) -> Int) -> (Int -> Int) -> Int
m >>== k = m $ cap10 k

foo'' :: Int
foo'' =
    add 1 2 >>== \x -> -- 3
    add x 4 >>== \y -> -- 7
    add y 5 >>== \z -> -- 12
    undefined

GCHi> foo''
7

Woa! Maybe we have just invented the Cap10 monad!

Now if we look at the source code of Cont, we see that Cont is

newtype Cont r a = Cont { runCont :: (a -> r) -> r }

The type of runCont is

Cont r a -> (a -> r) -> r
((a -> r) -> r) -> (a -> r) -> r

Which lines up nicely with the type of our >>==

Now to actually answer the question

Now after typing all this I reread the original question. The OP asked for the "difference" :P

I guess the difference is CPS gives the caller more control, where as usually the >>= in a monad is fully controlled by the monad's author.

鸠书 2024-10-16 05:40:39

探讨这个问题的一篇有趣的论文是 “命令式函数编程”,作者:Peyton Jones 和 Wadler。

该论文介绍了单子 IO,并且与包括 CPS 在内的其他方法进行了比较。

作者得出结论:

所以单子比延续更强大,但这只是因为类型!目前尚不清楚这是否只是 Hindley-Milner 类型系统的一个产物,或者这些类型是否揭示了根本重要性的差异(我们自己的直觉是后者 - 但这只是一种直觉。)

An interesting paper which explores the issue is "Imperative functional programming", by Peyton Jones and Wadler.

It's the paper which introduced monadic IO, and it has comparisons to alternative approaches, including CPS.

The authors conclude:

So monads are more powerful than continuations, but only because of the types! It is not clear whether this is only an artifact of the Hindley-Milner type system, or whether the types are revealing a difference of fundamental importance (our own intuition it's the latter -- but it's only an intuition.)

哆兒滾 2024-10-16 05:40:39

没有任何关系,因此这个问题与询问蓝色和冥王星之间的差异一样有意义。

There is no relation, thus the question makes about as much sense as asking about the difference between the color blue and Pluto.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文