学习 lambda 演算的先决条件
谁能告诉我学习 lambda 演算的先决条件是什么(如果有的话)?
Can anyone tell me what are the pre-requisites to learning lambda calculus (if any)?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
这实际上取决于您想用 lambda 演算做什么。如果你想学习它只是为了看看它是如何工作的,那么实际上没有任何先决条件;它非常独立。但是,如果您想了解有关它的任何证明(图灵完备性、丘奇数字、标准化等),您可能需要更多数学先决条件。特别是,我建议您了解归纳证明技术的背景,尤其是结构归纳法。了解一些有关停止问题或某种不完备性定理的知识也可能会很好,因为 lambda 演算的一些有趣结果涉及不可计算性。
That really depends on what you want to do with the lambda calculus. If you want to learn it just to see how it works there really aren't any prerequisites; it's pretty self-contained. However, if you want to understand any of the proofs about it (Turing-completeness, Church numerals, normalization, etc.) you might need more math prereqs. In particular, I'd suggest a background in inductive proof techniques, especially structural induction. It also might be nice to know a little about either the halting problem or some sort of incompleteness theorem, since some of the fun results with lambda calculus involve non-computability.
理解 Lambda 演算本身没有先决条件。如果您不是计算机科学家,甚至不知道递归,您可以在大约 30 分钟内非正式地学习(无类型)Lambda 演算的基础知识:http://palmstroem.blogspot.de/2012/05/lambda-calculus-for-absolute-dummies.html
这应该会让您对它的作用和工作方式有一个直观的认识。
如果您熟悉基本的数学符号和递归定义,则可以阅读标准介绍。特别是,如果您想学习 Lambda 演算作为 Haskell 的基础,您应该深入研究类型化 Lambda 演算:http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
There are no prerequisites for understanding the Lambda Calculus itself. If you are not a computer scientist and don't even know recursion, you can learn the basics of (untyped) Lambda Calculus informally in about 30 minutes here: http://palmstroem.blogspot.de/2012/05/lambda-calculus-for-absolute-dummies.html
This should give you a working intuition about what it does and how it works.
If you are familiar with basic mathematical notations and recursive definitions, you can go for a standard introduction. Especially, if you want to learn about the Lambda Calculus as a basis for Haskell, you should delve into the depths of the typed Lambda Calculus: http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf