检索从 SIFT / SURF 获得的最重要特征

发布于 2024-10-08 07:44:07 字数 302 浏览 10 评论 0原文

我正在使用 SURF 从图像中提取特征并将其与其他图像进行匹配。我的问题是,某些图像具有超过 20000 个特征,这会减慢爬行匹配速度。

有没有办法可以从该集中提取 n 个最重要的特征?

我尝试计算图像的 MSER,并且仅使用这些区域内的特征。这使我的工作量减少了 5% 到 40%,且不会对匹配质量产生负面影响,但这是不可靠的,而且仍然不够。
我还可以缩小图像的大小,但在某些情况下,这似乎会严重影响特征的质量。
SURF 提供了一些参数(粗麻布阈值、八度音阶和每八度音阶的层数),但我找不到任何有关更改这些参数将如何影响特征重要性的信息。

I'm using SURF to extract features from images and match them to others. My Problem is that some images have in excess of 20000 features which slows down matching to a crawl.

Is there a way I can extract only the n most significant features from that set?

I tried computing MSER for the image and only use features that are within those regions. That gives me a reduction anywhere from 5% to 40% without affecting matching quality negatively, but that's unreliable and still not enough.
I could additionally size the image down, but I that seems to affect the quality of features severely in some cases.
SURF offers a few parameters (hessian threshold, octaves and layers per octave) but I couldn't find anything on how changing these would affect feature significance.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

风尘浪孓 2024-10-15 07:44:07

经过一些研究和测试,我发现每个特征的 Hessian 值是对其强度的粗略估计,但是使用按 Hessian 排序的前 n 个特征并不是最佳选择。
当执行以下操作时,我取得了更好的结果,直到特征数量低于 n 的目标:

  • 如果图像太大,则缩小图像
  • 大小 仅考虑位于 MSER 区域中的特征
  • 对于彼此非常接近的特征,仅考虑考虑具有较高 hessian 的特征
  • 在我想要保存的每张图像的 n 个特征中,75% 是具有最高 hessian 值的特征
  • 其余特征是从其余特征中随机获取的,通过直方图计算的 hessian 值的分布进行加权

现在我只需要找到一个合适的n,但目前1500左右似乎就足够了。

After some researching and testing I have found that the Hessian value for each feature is a rough estimate of it's strength, however using the top n features sorted by the hessian is not optimal.
I achieved better results when doing the following until number of features is below the target of n:

  • Size the image down, if it is overly large
  • Only features that lie in MSER regions are considered
  • For features that lie very close to each other, only the feature with the higher hessian is considered
  • Of the n features per image that I want to save, 75% are the features with the highest hessian values
  • The remaining features are taken randomly from the remainder, weighted by distribution of the hessian values computed through a histogram

Now I only need to find a suitable n, but around 1500 seems enough currently.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文