相机标定体积

发布于 2024-10-07 22:17:26 字数 134 浏览 7 评论 0原文

我正在处理这个问题,涉及相机校准。我需要校准相机来实现 3D 物体的测量。我正在使用 OpenCV 进行校准,我想知道如何预测或计算相机经过良好校准的体积。有没有办法特别增加光轴方向的体积?增加校准目标在“z”方向上的移动范围的过程是否给出了足够的差异?

I am dealing with the problem, which concerns the camera calibration. I need calibrated cameras to realize measurements of the 3D objects. I am using OpenCV to carry out the calibration and I am wondering how can I predict or calculate a volume in which the camera is well calibrated. Is there a solution to increase the volume espacially in the direction of the optical axis? Does the procedure, in which I increase the movement range of the calibration target in 'z' direction gives sufficient difference?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

蓝天白云 2024-10-14 22:17:26

我认为你在问题中混淆了一些关键的事情:

  • 相机校准 - 这意味着找出描述相机位置、旋转、向上向量、畸变、光学中心等的矩阵(内在和外在)。
  • 极线校正 - 这意味着实际上“旋转”图像平面,使它们变得共面(平行)。这简化了立体重建算法。

对于相机校准,您不需要关心任何体积 - 不存在相机校准良好或校准错误的体积。如果您使用棋盘图案校准,则您的相机要么已校准,要么未校准。

在处理校正时,您想知道校正后的图像的哪些区域相对应,并最大化这些区域。 OpenCV 允许您在两个极端之间进行选择 - 要么使返回区域中的所有像素有效并剪切掉不适合矩形区域的像素,要么包括所有无效像素。

OpenCV 文档在这里有一些很好的、更详细的描述: http://opencv.willowgarage.com/documentation/ camera_calibration_and_3d_reconstruction.html

I think you confuse a few key things in your question:

  • Camera calibration - this means finding out the matrices (intrinsic and extrinsic) that describe the camera position, rotation, up vector, distortion, optical center etc. etc.
  • Epipolar Rectification - this means virtually "rotating" the image planes so that they become coplanar (parallel). This simplifies the stereo reconstruction algorithms.

For camera calibration you do not need to care about any volumes - there aren't volumes where the camera is well calibrated or wrong calibrated. If you use the chessboard pattern calibration, your cameras are either calibrated or not.

When dealing with rectification, you want to know which areas of the rectified images correspond and also maximize these areas. OpenCV allows you to choose between two extremes - either making all pixels in the returned areas valid and cutting out pixels that don't fit into the rectangular area or include all pixels even with invalid ones.

OpenCV documentation has some nice, more detailed descriptions here: http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文