相机标定体积
我正在处理这个问题,涉及相机校准。我需要校准相机来实现 3D 物体的测量。我正在使用 OpenCV 进行校准,我想知道如何预测或计算相机经过良好校准的体积。有没有办法特别增加光轴方向的体积?增加校准目标在“z”方向上的移动范围的过程是否给出了足够的差异?
I am dealing with the problem, which concerns the camera calibration. I need calibrated cameras to realize measurements of the 3D objects. I am using OpenCV to carry out the calibration and I am wondering how can I predict or calculate a volume in which the camera is well calibrated. Is there a solution to increase the volume espacially in the direction of the optical axis? Does the procedure, in which I increase the movement range of the calibration target in 'z' direction gives sufficient difference?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我认为你在问题中混淆了一些关键的事情:
对于相机校准,您不需要关心任何体积 - 不存在相机校准良好或校准错误的体积。如果您使用棋盘图案校准,则您的相机要么已校准,要么未校准。
在处理校正时,您想知道校正后的图像的哪些区域相对应,并最大化这些区域。 OpenCV 允许您在两个极端之间进行选择 - 要么使返回区域中的所有像素有效并剪切掉不适合矩形区域的像素,要么包括所有无效像素。
OpenCV 文档在这里有一些很好的、更详细的描述: http://opencv.willowgarage.com/documentation/ camera_calibration_and_3d_reconstruction.html
I think you confuse a few key things in your question:
For camera calibration you do not need to care about any volumes - there aren't volumes where the camera is well calibrated or wrong calibrated. If you use the chessboard pattern calibration, your cameras are either calibrated or not.
When dealing with rectification, you want to know which areas of the rectified images correspond and also maximize these areas. OpenCV allows you to choose between two extremes - either making all pixels in the returned areas valid and cutting out pixels that don't fit into the rectangular area or include all pixels even with invalid ones.
OpenCV documentation has some nice, more detailed descriptions here: http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html