用于信号过滤的 DWT 或 WP

发布于 2024-10-07 16:40:02 字数 244 浏览 2 评论 0原文

我正在处理一个与小波变换相关的棘手问题(至少对我来说很棘手:)。我有一个信号,比如说一个正弦曲线(频率 f1)与另一个正弦曲线(频率 f2)叠加。如果另一个信号的频率高于原始信号的频率,则其过滤不会出现问题。然而,这不是我的情况,因为我必须处理两个具有相似频率的信号,例如,f2 = 1.2 f1。有什么方法可以使用小波变换(最好是 DWT 或小波包)重建原始正弦曲线?我可能会更好地受益于 CWT,因为它显示了完整的时间尺度属性,但这不是选择。

非常感谢。

I'm dealing with a tricky problem related to the wavelet transform (tricky at least for me :). I have a signal, say a sinusoid (frequency f1) with another sinusoid (freq. f2) superposed. If the other signal has higher frequency than the original one, no problem with its filtration appears. However, this is not my case as I have to deal with two signals with similar frequencies, for example, f2 = 1.2 f1. Is there any way to reconstruct the original sinusoid using wavelet transformation, preferably DWT or wavelet packages? I would probably better benefit from CWT as it shows complete time-scale properties, but it is not the option.

Many thanks in advance.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

夜光 2024-10-14 16:40:02

您正在研究频率与时间不确定性问题。您将需要更长的基向量来分离频率更接近的频谱内容。

对于 0.2 的 delta F,您可能需要尝试使用比感兴趣的正弦曲线周期长 10 倍范围内的基向量。

You are looking at a frequency versus time uncertainty issue. You will need longer basis vectors to separate spectral content that is closer together in frequency.

For a delta F of 0.2, you might want to try using basis vectors that are in the range of 10 times longer than the period(s) of the sinusoids of interest.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文