如何连接重叠的圆圈?
我想在视觉上连接两个重叠的圆圈,以便
变为
我已经有部分圆的方法,但现在我需要知道每个圆的重叠角度有多大,但我不知道该怎么做。
有人有主意吗?
I want to visually join two circles that are overlapping so that
becomes
I already have methods for partial circles, but now I need to know how large the overlapping angle for earch circle is, and I don't know how to do that.
Anyone got an Idea?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
太棒了!
编辑
对于两个不同的半径:
稍微简化一下:
编辑
如果你想要从另一个圆心看的角度,只需将最后一个方程中的R1换成R2即可。
以下是 Mathematica 中的示例实现:
和...
:)
HTH!
Edit
For two different radii:
Simplifying a little:
Edit
If you want the angle viewed from the other circle center, just exchange R1 by R2 in the last equation.
Here is a sample implementation in Mathematica:
And...
:)
现在,即使图形是椭圆形和任意数量的图形,这也将 100% 为您工作
Now this will work 100% for you even the figure is ellipse and any number of figures
现在没有时间解决它。但我会给你解决这个问题所需的信息:
http://en。 wikipedia.org/wiki/Triangle#The_sine.2C_cosine_and_tangent_rules
在维基百科的图片中,您可以看到三角形 A、B、C。设A为左圆的圆心,B为右圆的圆心。 AC 是左圆的半径,BC 是右圆的半径。
那么点 C 将是顶部交点。 A 中的角点 α 是左圆角度的一半。b 中的角点 β 是右圆角度的一半。这些是您需要的角度,对吧?
维基百科进一步解释:“如果任何三角形的所有三边的长度已知,则可以计算三个角度。”
伪代码:
祝你好运:)
Don't have the time to solve it right now. But I'll give you what you need to work it out:
http://en.wikipedia.org/wiki/Triangle#The_sine.2C_cosine_and_tangent_rules
In the picture on wikipedia you see the triangle A,B,C. Let A be the center of the left circle, B the center of the right circle. And AC the radius of the left circle and BC the radius of the right circle.
Then point C would be the top intersection point. The corner in A, α, is half the angle in the left circle.The corner in b, β, half the angle in the right circle. These are the angles you need, right?
Wikipedia explains further: 'If the lengths of all three sides of any triangle are known the three angles can be calculated.'
Pseudocode:
Good luck :)