迭代最近点实现

发布于 2024-10-07 13:27:04 字数 616 浏览 5 评论 0原文

我目前正在使用以下伪代码在 C# 中实现 ICP 算法。从 ICP Powerpoint 获取,

function ICP(Scene,Model)
 begin
  E` = + ∞;
  (Rot,Trans) = In Initialize-Alignment(Scene,Model);
  repeat 
E = E`;
Aligned-Scene = Apply-Alignment(Scene,Rot,Trans);
Pairs = Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E`) = Update-Alignment(Scene,Model,Pairs,Rot,Trans);
  Until |E`- E|  < Threshold
  return (Rot,Trans);
 end    

但我不是完全确定应该如何实现更新对齐?如果有人能比幻灯片更清楚地解释这一点,那就太好了:)我已经编写了计算对应误差和对齐误差的方法,但是我不确定如何应用这些方法来获得新的更新对齐。

I am currently using the following pseudo code to implement the ICP algorithm in C#. Obtained from ICP Powerpoint

function ICP(Scene,Model)
 begin
  E` = + ∞;
  (Rot,Trans) = In Initialize-Alignment(Scene,Model);
  repeat 
E = E`;
Aligned-Scene = Apply-Alignment(Scene,Rot,Trans);
Pairs = Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E`) = Update-Alignment(Scene,Model,Pairs,Rot,Trans);
  Until |E`- E|  < Threshold
  return (Rot,Trans);
 end    

However I am not entirely sure how update alignment should be implemented? If someone could explain this a little clearer than the powerpoint that would be great :) I have written the methods for calculating correspondence error and alignment error, however I am not sure how to apply these to get the new updated alignment.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

不必在意 2024-10-14 13:27:04

第 10 张幻灯片上的公式(它们实际上是编写同一公式的两种等效方法)为您提供对齐的均方误差。您想要选择旋转和平移(q 向量是它们的组合)以最小化均方误差。 MSE 是 q 向量的一个很好的可微函数,因此很容易使用诸如共轭梯度法之类的方法从当前对齐开始找到一个新的对齐(至少局部地)最小化 MSE。

The formulas on slide 10 (they are actually two equivalent ways of writing the same formula) give you the mean squared error of your alignment. You want to choose your rotation and translation (the q vector is the combination of these) to minimize the mean squared error. The MSE is a nice, differentiable function of the q vector, so it is easy to use something like the Conjugate Gradient Method starting from the current alignment to find a new alignment that (at least locally) minimizes the MSE.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文