coq 中的所有介绍?
我试图(经典地)
~ (forall t : U, phi) -> exists t: U, ~phi
在 Coq 中证明。我想做的是用反证法证明它:
1. Assume there is no such t (so ~(exists t: U, ~phi))
2. Choose arbitrary t0:U
3. If ~phi[t/t0], then contradiction with (1)
4. Therefore, phi[t/t0]
5. Conclude (forall t:U, phi)
我的问题是第(2)行和第(5)行。我不知道怎么办 选择 U 的任意元素,证明一些关于 它,并结束一个forall。
有什么建议(我不致力于使用反证法)?
I'm trying to (classically) prove
~ (forall t : U, phi) -> exists t: U, ~phi
in Coq. What I'm trying to do is prove it contrapositively:
1. Assume there is no such t (so ~(exists t: U, ~phi))
2. Choose arbitrary t0:U
3. If ~phi[t/t0], then contradiction with (1)
4. Therefore, phi[t/t0]
5. Conclude (forall t:U, phi)
My problem is with lines (2) and (5). I can't figure out how
to choose an arbitrary element of U, prove something about
it, and conclude a forall.
Any suggestions (I'm not committed to using the contrapositive)?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
为了模仿你的非正式证明,我使用经典公理 ØØP → P(称为 NNPP)[1]。
应用后,您需要用 A : Ø(∀ x:U, φ x) 和 B : Ø(∃ x:U, Ø x) 来证明
False
。 A 和 B 是你推断False
的唯一武器。让我们尝试一下A[2]。所以需要证明∀ x:U, φ x。为了做到这一点,我们取任意 t₀ 并尝试证明 φ t₀ 成立 [3]。现在,由于您处于经典设置[4],您知道 φ t₀ 成立(并且已经完成[5])或 Ø(φ t₀) 成立。但后者是不可能的,因为它与 B [6]相矛盾。In order to mimic your informal proof, i use the classic axiom ¬¬P → P (called NNPP) [1].
After applying it, you need to prove
False
with both A : ¬(∀ x:U, φ x) and B : ¬(∃ x:U, φ x). A and B are your only weapons to deduceFalse
. Let's try A [2]. So you need to prove that ∀ x:U, φ x. In order to do that, we take an arbitrary t₀ and try to prove that φ t₀ holds [3]. Now, since you are in classical setting[4], you know that either φ t₀ holds (and it's finished[5]) or ¬(φ t₀) holds. But the latter is impossible since it would contradict B [6].