测量数字供电的复杂性

发布于 2024-10-06 08:47:50 字数 1463 浏览 3 评论 0原文

我使用分治技术实现了一个为数字 (a^n) 供电的程序。我实现了同一问题的两个版本:

版本 1:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return pow(power(a,n/2),2)

    else:
        return pow(power(a,(n-1)/2),2)*a

  if __name__ == "__main__":
    input_params()

版本 2:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return power(a,n/2)*power(a,n/2)

    else:
        return power(a,(n-1)/2)*power(a,(n-1)/2)*a



if __name__ == "__main__":
    input_params()

版本 3:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return square(power(a,n/2))

    else:
        return square(power(a,(n-1)/2))*a

def square(num):
    return num*num

if __name__ == "__main__":
    input_params()

Q1:以上版本中哪一个具有复杂性θ(lg n)

Q2:如果版本 2 的复杂度为 θ(lg n),为什么?因为虽然版本 2 中的问题大小除以二,但子问题的数量也是两个,所以我感觉版本 2 会按照 θ(nlg n) 的顺序增长。

我不确定我的结论。

谢谢

I implemented a program for powering a number (a^n) using the divide and conquer technique. i implemented two versions of the same problem:

Version 1:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return pow(power(a,n/2),2)

    else:
        return pow(power(a,(n-1)/2),2)*a

  if __name__ == "__main__":
    input_params()

Version 2:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return power(a,n/2)*power(a,n/2)

    else:
        return power(a,(n-1)/2)*power(a,(n-1)/2)*a



if __name__ == "__main__":
    input_params()

Version 3:

def input_params():
    a=input('Input \'a\' & \'n\' for a^n:')
    n=input('')
    result=power(a,n)
    print (result)

def power(a,n):
    if n<=1:
        return a

    elif n%2==0:
        return square(power(a,n/2))

    else:
        return square(power(a,(n-1)/2))*a

def square(num):
    return num*num

if __name__ == "__main__":
    input_params()

Q1: Which one of the above versions have a complexity of θ(lg n)?

Q2: If version 2 has the complexity of θ(lg n), why? Because although the problem size in Version 2 is being divided by two, the number of sub problems are also two, so I feel Version 2 will grow in the order of θ(nlg n) .

I am not sure about my conclusion.

Thanks

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

顾北清歌寒 2024-10-13 08:47:50

在版本 1 中,没有答案,因为您使用了一个从未定义过的名为 pow 的函数,因此无法真正说出复杂性是什么。

在版本 2 中,存在冗余计算,因此答案取决于您是否认为这些冗余计算是复杂性的一部分(因为它们很容易被忽略)。

尝试根据名为 square 的函数编写版本 3,并包含 square 的定义

在所有情况下,您都需要对基本操作的成本进行一些假设 (*/+)您使用。您可能想假设它们的成本都是 O(1),但您应该在分析中明确这一点。

In version 1, there's no answer as you use a function called pow which you never define, so one can't really say what the complexity is.

In version 2, there are redundant calculations, so the answer depends on whether you consider those redundant calculations as being part of your complexity or not (as they can easily be left out).

Try writing version 3 in terms of a function called square and include a definition for square

In all cases you need some assumptions about the cost of the basic operations (*, /, and +) you use. You probably want to assume they all cost O(1), but you should make that clear in your analysis.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文