如何在RWeka中评估这个方案?
我试图评估的方案是:
weka.classifiers.meta.AttributeSelectedClassifier -E "weka.attributeSelection.CfsSubsetEval " -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W weka.classifiers.functions.SMOreg -- -C 1.0 -N 0 -I "weka.classifiers.functions.supportVector.RegSMOImproved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V" -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0"
即我试图运行一个内部带有 SMOreg 分类器的 AttributeSelectedClassifier。每个其他参数都是相应分类器的默认值。
所以 R 代码是:
optns <- Weka_control(W = "weka.classifiers.functions.SMOreg")
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
当我运行上述 R 代码时,出现此错误:
Error in .jcall(evaluation, "D", x, ...) : java.lang.NullPointerException
上述错误发生在 RWeka 的评估中。R 尝试调用 WEKA 方法: "pctCorrect"、"pctIn Correct"、"pctUnclassified" , "kappa", "meanAbsoluteError","rootMeanSquaredError","relativeAbsoluteError","rootRelativeSquaredError"
我还尝试使用 Weka_control 对象手动指定默认值,如下所示:
optns <- Weka_control(E = "weka.attributeSelection.CfsSubsetEval ",
S = list("weka.attributeSelection.BestFirst", D = 1,N = 5),
W = list("weka.classifiers.functions.SMOreg", "--",
C=1.0, N=0,
I = list("weka.classifiers.functions.supportVector.RegSMOImproved",
L = 0.0010, W=1,P=1.0E-12,T=0.0010,V=TRUE),
K = list("weka.classifiers.functions.supportVector.PolyKernel",
C=250007, E=1.0)))
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
我收到此错误:
Error in .jcall(分类器,“V”,“buildClassifier”,实例): java.lang.Exception:找不到名为的类:weka.classifiers.functions.SMOreg -- -C 1 -N 0 -I weka.classifiers.functions.supportVector.RegSMOImproved -L 0.001 -W 1 -P 1e-12 -T 0.001 -V -K weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1
The scheme I am trying to evaluate is:
weka.classifiers.meta.AttributeSelectedClassifier -E "weka.attributeSelection.CfsSubsetEval " -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W weka.classifiers.functions.SMOreg -- -C 1.0 -N 0 -I "weka.classifiers.functions.supportVector.RegSMOImproved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V" -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0"
i.e. I am trying to run an AttributeSelectedClassifier with an SMOreg classifier inside. Every other parameter is the default value of the respective classifier.
So the R code is:
optns <- Weka_control(W = "weka.classifiers.functions.SMOreg")
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
When I run the above R code I get this error:
Error in .jcall(evaluation, "D", x, ...) : java.lang.NullPointerException
The above error happens in RWeka's evaluate.R where it tries to call the WEKA methods: "pctCorrect", "pctIncorrect", "pctUnclassified", "kappa", "meanAbsoluteError","rootMeanSquaredError","relativeAbsoluteError","rootRelativeSquaredError"
I also tried manually specifying the default values using the Weka_control object like so:
optns <- Weka_control(E = "weka.attributeSelection.CfsSubsetEval ",
S = list("weka.attributeSelection.BestFirst", D = 1,N = 5),
W = list("weka.classifiers.functions.SMOreg", "--",
C=1.0, N=0,
I = list("weka.classifiers.functions.supportVector.RegSMOImproved",
L = 0.0010, W=1,P=1.0E-12,T=0.0010,V=TRUE),
K = list("weka.classifiers.functions.supportVector.PolyKernel",
C=250007, E=1.0)))
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
and I get this error:
Error in .jcall(classifier, "V", "buildClassifier", instances) :
java.lang.Exception: Can't find class called: weka.classifiers.functions.SMOreg -- -C 1 -N 0 -I weka.classifiers.functions.supportVector.RegSMOImproved -L 0.001 -W 1 -P 1e-12 -T 0.001 -V -K weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我尝试了您的示例,但出现了不同的错误(其中 dat 是我自己的数据帧)
您的错误可能与调用此 Weka 函数的语法不直接相关,而是与路径设置有关。
I tried your example but got a different error (where dat is my own data frame)
Your error may be not directly related to syntax of calling this Weka function but some issues with path setup.