分离轴定理快把我逼疯了!
我正在研究用于 2D 游戏的分离轴定理的实现。它有点有效,但只是有点。
我这样使用它:
bool penetration = sat(c1, c2) && sat(c2, c1);
其中 c1
和 c2
的类型为 Convex
,定义为:(
class Convex
{
public:
float tx, ty;
public:
std::vector<Point> p;
void translate(float x, float y) {
tx = x;
ty = y;
}
};
Point
是float x
, float y
的结构)
点按顺时针方向输入。
我当前的代码(忽略 Qt 调试):
bool sat(Convex c1, Convex c2, QPainter *debug)
{
//Debug
QColor col[] = {QColor(255, 0, 0), QColor(0, 255, 0), QColor(0, 0, 255), QColor(0, 0, 0)};
bool ret = true;
int c1_faces = c1.p.size();
int c2_faces = c2.p.size();
//For every face in c1
for(int i = 0; i < c1_faces; i++)
{
//Grab a face (face x, face y)
float fx = c1.p[i].x - c1.p[(i + 1) % c1_faces].x;
float fy = c1.p[i].y - c1.p[(i + 1) % c1_faces].y;
//Create a perpendicular axis to project on (axis x, axis y)
float ax = -fy, ay = fx;
//Normalize the axis
float len_v = sqrt(ax * ax + ay * ay);
ax /= len_v;
ay /= len_v;
//Debug graphics (ignore)
debug->setPen(col[i]);
//Draw the face
debug->drawLine(QLineF(c1.tx + c1.p[i].x, c1.ty + c1.p[i].y, c1.p[(i + 1) % c1_faces].x + c1.tx, c1.p[(i + 1) % c1_faces].y + c1.ty));
//Draw the axis
debug->save();
debug->translate(c1.p[i].x, c1.p[i].y);
debug->drawLine(QLineF(c1.tx, c1.ty, ax * 100 + c1.tx, ay * 100 + c1.ty));
debug->drawEllipse(QPointF(ax * 100 + c1.tx, ay * 100 + c1.ty), 10, 10);
debug->restore();
//Carve out the min and max values
float c1_min = FLT_MAX, c1_max = FLT_MIN;
float c2_min = FLT_MAX, c2_max = FLT_MIN;
//Project every point in c1 on the axis and store min and max
for(int j = 0; j < c1_faces; j++)
{
float c1_proj = (ax * (c1.p[j].x + c1.tx) + ay * (c1.p[j].y + c1.ty)) / (ax * ax + ay * ay);
c1_min = min(c1_proj, c1_min);
c1_max = max(c1_proj, c1_max);
}
//Project every point in c2 on the axis and store min and max
for(int j = 0; j < c2_faces; j++)
{
float c2_proj = (ax * (c2.p[j].x + c2.tx) + ay * (c2.p[j].y + c2.ty)) / (ax * ax + ay * ay);
c2_min = min(c2_proj, c2_min);
c2_max = max(c2_proj, c2_max);
}
//Return if the projections do not overlap
if(!(c1_max >= c2_min && c1_min <= c2_max))
ret = false; //return false;
}
return ret; //return true;
}
我做错了什么?它完美地记录了碰撞,但在一个边缘过于敏感(在我使用三角形和菱形的测试中):
//Triangle
push_back(Point(0, -150));
push_back(Point(0, 50));
push_back(Point(-100, 100));
//Diamond
push_back(Point(0, -100));
push_back(Point(100, 0));
push_back(Point(0, 100));
push_back(Point(-100, 0));
我对此感到非常不安,请帮助我:)
i am working on an implementation of the Separting Axis Theorem for use in 2D games. It kind of works but just kind of.
I use it like this:
bool penetration = sat(c1, c2) && sat(c2, c1);
Where c1
and c2
are of type Convex
, defined as:
class Convex
{
public:
float tx, ty;
public:
std::vector<Point> p;
void translate(float x, float y) {
tx = x;
ty = y;
}
};
(Point
is a structure of float x
, float y
)
The points are typed in clockwise.
My current code (ignore Qt debug):
bool sat(Convex c1, Convex c2, QPainter *debug)
{
//Debug
QColor col[] = {QColor(255, 0, 0), QColor(0, 255, 0), QColor(0, 0, 255), QColor(0, 0, 0)};
bool ret = true;
int c1_faces = c1.p.size();
int c2_faces = c2.p.size();
//For every face in c1
for(int i = 0; i < c1_faces; i++)
{
//Grab a face (face x, face y)
float fx = c1.p[i].x - c1.p[(i + 1) % c1_faces].x;
float fy = c1.p[i].y - c1.p[(i + 1) % c1_faces].y;
//Create a perpendicular axis to project on (axis x, axis y)
float ax = -fy, ay = fx;
//Normalize the axis
float len_v = sqrt(ax * ax + ay * ay);
ax /= len_v;
ay /= len_v;
//Debug graphics (ignore)
debug->setPen(col[i]);
//Draw the face
debug->drawLine(QLineF(c1.tx + c1.p[i].x, c1.ty + c1.p[i].y, c1.p[(i + 1) % c1_faces].x + c1.tx, c1.p[(i + 1) % c1_faces].y + c1.ty));
//Draw the axis
debug->save();
debug->translate(c1.p[i].x, c1.p[i].y);
debug->drawLine(QLineF(c1.tx, c1.ty, ax * 100 + c1.tx, ay * 100 + c1.ty));
debug->drawEllipse(QPointF(ax * 100 + c1.tx, ay * 100 + c1.ty), 10, 10);
debug->restore();
//Carve out the min and max values
float c1_min = FLT_MAX, c1_max = FLT_MIN;
float c2_min = FLT_MAX, c2_max = FLT_MIN;
//Project every point in c1 on the axis and store min and max
for(int j = 0; j < c1_faces; j++)
{
float c1_proj = (ax * (c1.p[j].x + c1.tx) + ay * (c1.p[j].y + c1.ty)) / (ax * ax + ay * ay);
c1_min = min(c1_proj, c1_min);
c1_max = max(c1_proj, c1_max);
}
//Project every point in c2 on the axis and store min and max
for(int j = 0; j < c2_faces; j++)
{
float c2_proj = (ax * (c2.p[j].x + c2.tx) + ay * (c2.p[j].y + c2.ty)) / (ax * ax + ay * ay);
c2_min = min(c2_proj, c2_min);
c2_max = max(c2_proj, c2_max);
}
//Return if the projections do not overlap
if(!(c1_max >= c2_min && c1_min <= c2_max))
ret = false; //return false;
}
return ret; //return true;
}
What am i doing wrong? It registers collision perfectly but is over sensitive on one edge (in my test using a triangle and a diamond):
//Triangle
push_back(Point(0, -150));
push_back(Point(0, 50));
push_back(Point(-100, 100));
//Diamond
push_back(Point(0, -100));
push_back(Point(100, 0));
push_back(Point(0, 100));
push_back(Point(-100, 0));
I am getting this mega-adhd over this, please help me out :)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
好吧,我第一次就错了。查看失败案例的图片,很明显存在一个分离轴,并且是法线之一(三角形长边的法线)。投影是正确的,但是您的边界却不正确。
我认为错误在这里:
FLT_MIN 是最小的正常正数可以用浮点数表示,而不是最大的负数。事实上,您需要:
或者对于 C++ 来说甚至更好
,因为您可能会看到轴上的负投影。
OK, I was wrong the first time. Looking at your picture of a failure case it is obvious a separating axis exists and is one of the normals (the normal to the long edge of the triangle). The projection is correct, however, your bounds are not.
I think the error is here:
FLT_MIN is the smallest normal positive number representable by a float, not the most negative number. In fact you need:
or even better for C++
because you're probably seeing negative projections onto the axis.