始终获得与 A* 实现相同的路径
我正在尝试从来自维基百科的伪代码实现A*,但是我得到了一些奇怪的结果。
该实现找到了乍一看看起来不错的路径,但进一步观察它总是产生相同的路径!
有人能发现什么问题吗?该代码是用 python 3.1 编写的,并使用 pygame。
import pygame
import sys, traceback
import random
import math
TILE_WIDTH = 30
TILE_HEIGHT = 30
NUM_TILES_X = 30
NUM_TILES_Y = 30
NUM_TILES = NUM_TILES_X * NUM_TILES_Y
GRID_WIDTH = TILE_WIDTH * NUM_TILES_X
GRID_HEIGHT = TILE_HEIGHT * NUM_TILES_Y
# h(x,y)
def heuristic_dist(source,dest):
return int(( (source.x - dest.x)**2 + (source.y - dest.y)**2 ) **0.5)
def a_star(nodes,start,goal):
# Set up data structures
closedset = []
openset = [start]
came_from={}
g_score = {}
g_score[start.index] = 0
h_score = {}
h_score[start.index] = heuristic_dist(start,goal)
f_score = {}
f_score[start.index] = h_score[start.index]
while len(openset) > 0:
# Find node with least f_score in openset
x = min(openset,key=lambda el:f_score[el.index])
# We have reached our goal!
if x.index == goal.index:
path = reconstruct_path(came_from,goal.index)
# Mark the path with green color
for node in path:
nodes[node].color=(0,255,0)
print( "Yihaaa!" )
return True
# Filter out x from openset and add it to closedset
openset = list(filter(lambda y:y.index!=x.index,openset))
closedset.append(x)
# Go through all neighbours
for y in x.get_neighbours():
# If this neighbour has been closed, skip it
if y in closedset: continue
# Not sure that this is correct.
tentative_g_score = g_score[x.index] + heuristic_dist(x,y)
if y not in openset:
openset.append(y)
tentative_is_better = True
elif tentative_g_score < g_score[y.index]:
tentative_is_better = True
else:
tentative_is_better = False
if tentative_is_better:
if y.index in came_from:
if f_score[x.index] < f_score[came_from[y].index]:
came_from[y.index] = x
else:
came_from[y.index] = x
g_score[y.index] = tentative_g_score
h_score[y.index] = heuristic_dist(y, goal)
f_score[y.index] = g_score[y.index] + h_score[y.index]
print("Couldn't find a path!")
return False
# Traverse the path backwards
def reconstruct_path(came_from,current_node,depth=0):
if current_node in came_from:
p = reconstruct_path(came_from,came_from[current_node].index)
return p + [current_node]
else:
return [current_node]
def draw_string(surface,string,x,y):
s = font.render(string,True,(0,0,0))
surface.blit(s,(x,y))
# Tile or Node that has a cuple of attributes: color, cost and x,y
class Tile:
def __init__(self,x,y,cost,index):
self.x=x
self.y=y
self.cost=cost
self.index=index
self.color = (255,255,255)
def draw(self,surface):
surface.fill(self.color,pygame.Rect(self.x*TILE_WIDTH,self.y*TILE_HEIGHT,TILE_WIDTH,TILE_HEIGHT))
pygame.draw.rect(surface,(255, 180, 180),pygame.Rect(self.x*TILE_WIDTH,self.y*TILE_HEIGHT,TILE_WIDTH,TILE_HEIGHT),2)
draw_string(surface,str(self.cost),self.x*TILE_WIDTH+TILE_WIDTH//3,self.y*TILE_HEIGHT+TILE_HEIGHT//3)
def get_neighbours(self):
nbs = []
# Where are our neighbours?
offsets = [(0,-1),(-1,0),(1,0),(0,1)]
for offset in offsets:
x = self.x + offset[0]
y = self.y + offset[1]
try: # coord_to_tile throws exception if no such neighbour exists (out of bounds for example)
nbs.append(coord_to_tile(x,y))
except Exception as e:
pass
return nbs
def __eq__(self,other):
return self.x == other.x and self.y==other.y
# Small helper function to convert x,y coords to a tile instance
nodes_lookup={}
def coord_to_tile(x,y):
return nodes_lookup[(x,y)]
def main():
global nodes_lookup
screen = pygame.display.set_mode((GRID_WIDTH, GRID_HEIGHT))
tiles = []
for x in range(NUM_TILES_X):
for y in range(NUM_TILES_Y):
# Create a random distribution where max grows
cost = random.randint(1,min(x*y,98)+1)
# Let the bottom line cost 1 as well
if y == NUM_TILES_Y-1: cost = 1
t = Tile(x,y,cost,len(tiles))
nodes_lookup[(x,y)] = t
tiles.append(t)
# Do a*
a_star(tiles,tiles[0],tiles[len(tiles)-1])
while True:
event = pygame.event.wait()
if event.type == pygame.QUIT:
break
for tile in tiles:
tile.draw(screen)
pygame.display.flip()
pygame.init()
font = pygame.font.SysFont("Times New Roman",18)
try:
main()
except Exception as e:
tb = sys.exc_info()[2]
traceback.print_exception(e.__class__, e, tb)
pygame.quit()
我真的不知道,因为我认为我已经基本上逐条语句地实现了伪代码。
这也是一个屏幕截图: http://andhen.mine.nu/uploads/astar.dib
谢谢!
I'm trying to implementing A* from the pseudo code from wikipedia however I'm getting some weird results.
The implementation finds what at first looks like a good path, but with a further look it always produces the same path!
Can anyone spot anything wrong? The code is written in python 3.1 and uses pygame.
import pygame
import sys, traceback
import random
import math
TILE_WIDTH = 30
TILE_HEIGHT = 30
NUM_TILES_X = 30
NUM_TILES_Y = 30
NUM_TILES = NUM_TILES_X * NUM_TILES_Y
GRID_WIDTH = TILE_WIDTH * NUM_TILES_X
GRID_HEIGHT = TILE_HEIGHT * NUM_TILES_Y
# h(x,y)
def heuristic_dist(source,dest):
return int(( (source.x - dest.x)**2 + (source.y - dest.y)**2 ) **0.5)
def a_star(nodes,start,goal):
# Set up data structures
closedset = []
openset = [start]
came_from={}
g_score = {}
g_score[start.index] = 0
h_score = {}
h_score[start.index] = heuristic_dist(start,goal)
f_score = {}
f_score[start.index] = h_score[start.index]
while len(openset) > 0:
# Find node with least f_score in openset
x = min(openset,key=lambda el:f_score[el.index])
# We have reached our goal!
if x.index == goal.index:
path = reconstruct_path(came_from,goal.index)
# Mark the path with green color
for node in path:
nodes[node].color=(0,255,0)
print( "Yihaaa!" )
return True
# Filter out x from openset and add it to closedset
openset = list(filter(lambda y:y.index!=x.index,openset))
closedset.append(x)
# Go through all neighbours
for y in x.get_neighbours():
# If this neighbour has been closed, skip it
if y in closedset: continue
# Not sure that this is correct.
tentative_g_score = g_score[x.index] + heuristic_dist(x,y)
if y not in openset:
openset.append(y)
tentative_is_better = True
elif tentative_g_score < g_score[y.index]:
tentative_is_better = True
else:
tentative_is_better = False
if tentative_is_better:
if y.index in came_from:
if f_score[x.index] < f_score[came_from[y].index]:
came_from[y.index] = x
else:
came_from[y.index] = x
g_score[y.index] = tentative_g_score
h_score[y.index] = heuristic_dist(y, goal)
f_score[y.index] = g_score[y.index] + h_score[y.index]
print("Couldn't find a path!")
return False
# Traverse the path backwards
def reconstruct_path(came_from,current_node,depth=0):
if current_node in came_from:
p = reconstruct_path(came_from,came_from[current_node].index)
return p + [current_node]
else:
return [current_node]
def draw_string(surface,string,x,y):
s = font.render(string,True,(0,0,0))
surface.blit(s,(x,y))
# Tile or Node that has a cuple of attributes: color, cost and x,y
class Tile:
def __init__(self,x,y,cost,index):
self.x=x
self.y=y
self.cost=cost
self.index=index
self.color = (255,255,255)
def draw(self,surface):
surface.fill(self.color,pygame.Rect(self.x*TILE_WIDTH,self.y*TILE_HEIGHT,TILE_WIDTH,TILE_HEIGHT))
pygame.draw.rect(surface,(255, 180, 180),pygame.Rect(self.x*TILE_WIDTH,self.y*TILE_HEIGHT,TILE_WIDTH,TILE_HEIGHT),2)
draw_string(surface,str(self.cost),self.x*TILE_WIDTH+TILE_WIDTH//3,self.y*TILE_HEIGHT+TILE_HEIGHT//3)
def get_neighbours(self):
nbs = []
# Where are our neighbours?
offsets = [(0,-1),(-1,0),(1,0),(0,1)]
for offset in offsets:
x = self.x + offset[0]
y = self.y + offset[1]
try: # coord_to_tile throws exception if no such neighbour exists (out of bounds for example)
nbs.append(coord_to_tile(x,y))
except Exception as e:
pass
return nbs
def __eq__(self,other):
return self.x == other.x and self.y==other.y
# Small helper function to convert x,y coords to a tile instance
nodes_lookup={}
def coord_to_tile(x,y):
return nodes_lookup[(x,y)]
def main():
global nodes_lookup
screen = pygame.display.set_mode((GRID_WIDTH, GRID_HEIGHT))
tiles = []
for x in range(NUM_TILES_X):
for y in range(NUM_TILES_Y):
# Create a random distribution where max grows
cost = random.randint(1,min(x*y,98)+1)
# Let the bottom line cost 1 as well
if y == NUM_TILES_Y-1: cost = 1
t = Tile(x,y,cost,len(tiles))
nodes_lookup[(x,y)] = t
tiles.append(t)
# Do a*
a_star(tiles,tiles[0],tiles[len(tiles)-1])
while True:
event = pygame.event.wait()
if event.type == pygame.QUIT:
break
for tile in tiles:
tile.draw(screen)
pygame.display.flip()
pygame.init()
font = pygame.font.SysFont("Times New Roman",18)
try:
main()
except Exception as e:
tb = sys.exc_info()[2]
traceback.print_exception(e.__class__, e, tb)
pygame.quit()
I really have no clue, since I think I have pretty much implemented the pseudo code statement by statement.
Here's a screenshot as well:
http://andhen.mine.nu/uploads/astar.dib
Thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以使用
y
按时访问came_from
,并使用y.index
访问您可能
在第一行中提到的内容。
除此之外,代码看起来还不错。
不管怎样,总是产生相同的路径是什么意思?该算法应该返回应该始终相同的最佳路径...(或者您的意思是,它总是独立于
start
和goal
产生相同的路径? )`编辑:
您不会在算法中的任何地方使用随机
成本
。该算法使用的“成本”始终是两个相邻节点之间的距离:它们在heuristic_distance
中定义并在行中使用如果要定义随机成本,则必须首先意识到该算法分配边的成本,而不是顶点的成本。您必须定义一些函数
real_costs(x,y)
来计算从节点x
到节点y
的成本并使用它成本函数而不是上面一行中的heuristic_dist
。You access
came_from
on time withy
, and one time withy.index
inYou probably meant
in the first line.
Besides that, the code looks ok.
Anyway, what do you mean by always produces the same path? The algorithm is supposed to return the optimal path which should always be the same... (or did you mean, it always produces the same path independently of
start
andgoal
?)`EDIT:
You don't use your random
cost
anywhere in the algorithm. The 'costs' the algorithm is using are always the distance between two adjacent nodes: They are defined inheuristic_distance
and used in the lineIf you want to define random costs, you must first realize that this algorithm assigns costs to edges, not to vertices. You'll have to define some function
real_costs(x,y)
which calculates the costs for going from nodex
to nodey
and use this cost function instead ofheuristic_dist
in the above line.