等值线绘制的实现方法

发布于 2024-10-05 08:20:51 字数 301 浏览 3 评论 0 原文

我需要实现一种等高线绘图算法(而不是只使用一个算法)。输入是(连续)函数 f: R^2 - > R(该函数是在整个域上定义的,而不仅仅是针对某些输入)。输出应该是矢量形式,即一组样条线或线段。

我正在寻找有关如何实现这一点的建议,最好以(科学)论文的形式。

我发现了一些 80 年代开发的算法的参考资料(“关卡追踪算法”)。过去30年这方面有什么发展吗?解决这个问题的标准方法是什么?

该算法将用于实时可视化,因此它需要速度快,同时仍能产生不错的结果。

(小型、独立且经过良好测试的 C/C++ 实现也将受到欢迎。)

I need to implement a contour plotting algorithm (as opposed to just using one). The input is a (continuous) function f: R^2 - > R (the function is defined over the entire domain, not just for certain inputs). The output should be in vector form, i.e. a set of splines or line segments.

I'm looking for recommendations on how to implement this, preferably in the form of (scientific) papers.

I found some references to algorithms developed in the 80s ("Level Tracing Algorithm"). Have there been any development in this area in the past 30 years? What's the standard method(s) used to solve this problem?

The algorithm will be used for real-time visualization, so it needs to be fast while still producing decent results.

(Small, self-contained and well tested C/C++ implementations would be welcomed as well.)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

小矜持 2024-10-12 08:20:51

我记得 TI-89 计算器使用了一个非常简单的方案,如下所示:

  • 制作一个网格,试验网格大小
  • 计算网格每个顶点的函数
  • 对于每个正方形,如果有两个具有不同符号的 f 值,则有一些东西里面很有趣。假设情况如下:
    • 对于正方形的每条“有趣”的边(f 在端点处有不同的符号),通过二等分(或者如果预算有限,则通过线性插值)找到该边上 f 的零。可能有两个或四个有趣的方面。
    • 如果有两条有趣的边,请在零点之间画一条直线。
    • 如果有四个有趣的边,请画一个十字。

现在,您可能想要自适应地细化有趣的方块。 TI-89 的屏幕非常小(160x120),但这是没有必要的。可以在有趣的正方形内使用完全相同的方法。

I recall the TI-89 calculator used a very simple scheme like this:

  • Make a grid, experiment with mesh size
  • Compute your function at each vertex of the grid
  • For each square, if there are two values of f with different signs, there is something interesting inside. Assume it is the case in the following:
    • For each "interesting" side of the square (f has different signs at endpoints), find the zero of f on the side by bisection (or by linear interpolation if you're on low budget). There may be two or four interesting sides.
    • If there are two interesting sides, draw a straight line between the zero points.
    • If there are four interesting sides, draw a cross.

Now, you may want to refine the interesting squares adaptatively. The TI-89 had a damn small screen (160x120) and this was not necessary. The exact same method can be used inside an interesting square.

栀梦 2024-10-12 08:20:51

例如,请参见 xfarbe

See for instance xfarbe.

痴者 2024-10-12 08:20:51

我可以建议最直接的方法:考虑一下您必须找到特定 Zf(x,y) = Z 轮廓。然后用顶点和边的等边三角形网格 M = (V,E,r) 为绘图字段 D = Subset(RxR) 播种,其中 < code>M - 网格,V - 顶点集,E - 边集,r - 三角形边长, 细节级别,LOD。然后,对于 V 中的每个顶点,计算 f 的值。然后,对于 E 中的每条边,检查边 (e[k]) 的顶点 (f) 值是否为 f例如 >v[i] 和 v[j])位于 Z 的不同侧面,即,如果 f(v[i ])>Zf(v[j])。如果是这样,则 f(x,y) = Z 的轮廓线与该边 e[k] 相交于某个点 (c[k]< /code>),可以线性近似:

t = ( f(v[i]) - Z ) / ( f(v[i]) - f(v[j]))
c'[k] = v[i]*(1-t) + v[j]*t

由于具有一个边缘轮廓相交的三角形在其余两条边缘中的一些边缘处有第二个相交(证明是微不足道的),我们得到第二个c'[k]。因此,对于 M 中的每个三角形,我们要么没有线段,要么只有一条线段,近似于轮廓线。绘制所有找到的线段将为我们提供具有一定细节水平的f(x,y)=Z的近似等值线图r。降低r将产生更精细的轮廓,提高r将提供性能。

May I suggest the most straightforward method: consider you have to find a contour of f(x,y) = Z for certain Z. Then seed your field of plot, D = subset(RxR) with net of equilateral triangle mesh of vertices and edges, M = (V,E,r), where M - mesh, V -set of vertices, E - set of edges, r - triangle side length, the level of detail, LOD. Then, for every vertex in V, compute the value of f. Then, for every edge in E, check if the edge (e[k]) has a value of f on it's vertices (v[i] and v[j] for example) on the different sides about Z, that is, if f(v[i])>Z and f(v[j])<Z. If so, than the contour line of f(x,y) = Z intersects this edge e[k] at a certain point (c[k]), which can be linearly approximated:

t = ( f(v[i]) - Z ) / ( f(v[i]) - f(v[j]))
c'[k] = v[i]*(1-t) + v[j]*t

As the triangle with one edge contour intersection has second intersection at some of the remaining two edges (proof is trivial), we obtain a second c'[k]. Thus, for every triangle from M we have either none or single line segment, approximating the contour line. Drawing all the found segments will provide us an approximate contour plot of f(x,y)=Z with certain level of detail r. Lowering r will produce finer contouring, raising r will give the performance.

江南烟雨〆相思醉 2024-10-12 08:20:51

我认为你需要在某个网格上为你的函数创建一个数据数组 f[i,j] ,从每个单元格收集线段,然后将它们连接成一条曲线。您应该记住可能的圆圈(即网格中存在几条闭合曲线)。这个算法正是在 MathGL(跨平台 GPL 绘图库)中使用的 - 请参阅 mglGraph::Cont 的实现() 功能。

I think you need to make a data arrays f[i,j] for yours function at some grid, collect line segment from each cell and connect them later into a curve(s). You should keep in mind possible circles (i.e. presence of several closed curves in the grid). Exactly this algorithm is used in MathGL (cross-platform GPL plotting library) -- see realization of mglGraph::Cont() function.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文