递归方法:我们如何生成括号上的所有可能性?

发布于 2024-10-05 04:05:29 字数 292 浏览 9 评论 0原文

我们怎样才能在大括号上生成所有可能性?

N值已经给了我们,我们要产生所有的可能性。

示例:

1) 如果 N == 1,则只有一种可能性 () 。

2) 如果 N==2,则可能性为 (())、()()

3) 如果 N==3,则可能性为 ((()))、(())()、()()( ), ()(()) ...

注意:左右大括号应该匹配。我的意思是 )( 对于 N==1 是无效的

我们可以通过使用递归方法来解决这个问题吗?

How can we generate all possibilities on braces ?

N value has given to us and we have to generate all possibilities.

Examples:

1) if N == 1, then only one possibility () .

2) if N==2, then possibilities are (()), ()()

3) if N==3, then possibilities are ((())), (())(),()()(), ()(()) ...

Note: left and right braces should match. I mean )( is INVALID for the N==1

Can we solve this problem by using recurrence approach ?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

遮云壑 2024-10-12 04:05:29

来自维基百科 -

Dyck 单词是由 ​​n 个 X 和 n 个 Y 组成的字符串,因此该字符串的初始段中 Y 的数量不会多于 X 的数量(另请参阅 Dyck 语言)。例如,以下是长度为6的Dyck单词:

XXXYYY     XYXXYY     XYXYXY     XXYYXY     XXYXYY.

重新将符号 X 解释为左括号,Y 解释为右括号,Cn 计算包含正确匹配的 n 对括号的表达式的数量:

((()))     ()(())     ()()()     (())()     (()())

另请参阅 http://www.acta.sapientia.ro/acta-info/C1-1/info1-9.pdf

摘要。提出了一种生成所有 Dyck 词的新算法,
用于对 Dyck 单词进行排名和取消排名。我们强调
在编码与加泰罗尼亚语相关的对象时使用戴克词的重要性
数字。作为排名算法中使用的公式的结果
我们可以得到第n个Catalan数的递归公式。

From wikipedia -

A Dyck word is a string consisting of n X's and n Y's such that no initial segment of the string has more Y's than X's (see also Dyck language). For example, the following are the Dyck words of length 6:

XXXYYY     XYXXYY     XYXYXY     XXYYXY     XXYXYY.

Re-interpreting the symbol X as an open parenthesis and Y as a close parenthesis, Cn counts the number of expressions containing n pairs of parentheses which are correctly matched:

((()))     ()(())     ()()()     (())()     (()())

See also http://www.acta.sapientia.ro/acta-info/C1-1/info1-9.pdf

Abstract. A new algorithm to generate all Dyck words is presented,
which is used in ranking and unranking Dyck words. We emphasize the
importance of using Dyck words in encoding objects related to Catalan
numbers. As a consequence of formulas used in the ranking algorithm
we can obtain a recursive formula for the nth Catalan number.

演多会厌 2024-10-12 04:05:29

对于给定的N,我们始终必须以左大括号开头。现在考虑它对应的右大括号在哪里。它可以位于中间,如 ()() 中,也可以位于末尾,如 (()) 中的 N=2

现在考虑 N=3

它可以位于末尾:(()())((()))

或者在中间:()(())()()(),它位于位置 2。那么它也可以位于位置 4:(())()

现在我们基本上可以将这两种情况结合起来,实现右大括号位于末尾的情况与位于中间的情况相同,但将 N=0 的所有可能性添加到末尾。

现在要解决这个问题,您可以计算出开始和结束大括号之间的 n 的所有可能性,类似地,您可以计算出结束大括号之后的 m 的所有可能性。 (注意m+n+1 = N)然后您可以组合所有可能的组合,将它们附加到您的可能性列表中,然后继续移动到端括号的下一个可能位置。

请注意,处理此类问题时很容易犯的错误是找到 iNi 的所有可能性,然后将它们组合起来,但这对于 N=3 会重复计算 ()()() 或至少打印两次。

下面是一些解决该问题的 Python 2.x 代码:

memoise = {}
memoise[0] = [""]
memoise[1] = ["()"]

def solve(N, doprint=True):
    if N in memoise:
        return memoise[N]

    memoise[N] = []

    for i in xrange(1,N+1):
        between = solve(i-1, False)
        after   = solve(N-i, False)
        for b in between:
           for a in after:
               memoise[N].append("("+b+")"+a)

    if doprint:
        for res in memoise[N]:
            print res

    return memoise[N]

For a given N we always have to start with an open brace. Now consider where it's corresponding closing brace is. It can be in the middle like in ()() or at the end like (()) for N=2.

Now consider N=3:

It can be at the end: (()()) and ((())).

Or in the middle: ()(()) and ()()() where it's in position 2. Then it can also be in position 4: (())().

Now we can essentially combine the 2 cases by realising the case where the closing brace is at the end is the same as it being at the middle, but with all the possibilities for N=0 added to the end.

Now to solve it you can work out all the possibilities for n between the begin and end brace and similarly you can work out all the possibilities for m after the end brace. (Note m+n+1 = N) Then you can just combine all possible combinations, append them to your list of possibilities and move on to the next possible location for the end brace.

Just be warned an easy mistake to make with these types of problems, is to find all the possibilities for i and for N-i and just combine them, but this for N=3 would double count ()()() or at least print it twice.

Here is some Python 2.x code that solves the problem:

memoise = {}
memoise[0] = [""]
memoise[1] = ["()"]

def solve(N, doprint=True):
    if N in memoise:
        return memoise[N]

    memoise[N] = []

    for i in xrange(1,N+1):
        between = solve(i-1, False)
        after   = solve(N-i, False)
        for b in between:
           for a in after:
               memoise[N].append("("+b+")"+a)

    if doprint:
        for res in memoise[N]:
            print res

    return memoise[N]
梦途 2024-10-12 04:05:29

递归解:

import java.util.Scanner;

public class Parentheses
{

    static void ParCheck(int left,int right,String str)
    {
            if (left == 0 && right == 0)
            {
                    System.out.println(str);
            }

            if (left > 0)
            {
                    ParCheck(left-1, right+1 , str + "(");
            }
            if (right > 0)
            {
                    ParCheck(left, right-1, str + ")");
            }

    }
    public static void main(String[] args)
    {
            Scanner input=new Scanner(System.in);
            System.out.println("Enter the  number");
            int num=input.nextInt();

            String str="";
            ParCheck(num,0,str);
    }
} 

Recursive solution:

import java.util.Scanner;

public class Parentheses
{

    static void ParCheck(int left,int right,String str)
    {
            if (left == 0 && right == 0)
            {
                    System.out.println(str);
            }

            if (left > 0)
            {
                    ParCheck(left-1, right+1 , str + "(");
            }
            if (right > 0)
            {
                    ParCheck(left, right-1, str + ")");
            }

    }
    public static void main(String[] args)
    {
            Scanner input=new Scanner(System.in);
            System.out.println("Enter the  number");
            int num=input.nextInt();

            String str="";
            ParCheck(num,0,str);
    }
} 
不喜欢何必死缠烂打 2024-10-12 04:05:29

下面的一些代码本质上是 JPvdMerwe 代码的紧凑版本,只不过它返回解决方案列表而不是打印它们。该代码适用于 Python 2 和 Python 3。

from itertools import product

def solve(num, cache={0: ['']}):
    if num not in cache:
        cache[num] = ['(%s)%s' % t for i in range(1, num + 1)
            for t in product(solve(i - 1), solve(num - i))]
    return cache[num]

# Test

for num in range(1, 5):
    print(num)
    for s in solve(num):
        print(s)

输出

1
()
2
()()
(())
3
()()()
()(())
(())()
(()())
((()))
4
()()()()
()()(())
()(())()
()(()())
()((()))
(())()()
(())(())
(()())()
((()))()
(()()())
(()(()))
((())())
((()()))
(((())))

这里还有几个函数,源自 Ed Guness 链接的文章中给出的伪代码: acta.sapientia.ro/acta-info/C1-1/info1-9.pdf" rel="nofollow noreferrer">Dyck 词的生成和排名。该文章使用基于 1 的索引,但我已将它们转换为符合 Python 的基于 0 的索引。

这些函数比上面的 solve 函数慢,但它们可能仍然有用。 pos_dyck_words 的优点是它是纯粹迭代的。 unrank 是迭代的,但它调用递归辅助函数f; OTOH,f 使用缓存,所以它并没有那么慢,而且它只是缓存整数,它比 solve 的字符串缓存使用更少的 RAM。 unrank 的主要好处是它可以从索引号返回单个解决方案,而不必生成给定大小的所有解决方案。

此代码仅适用于 Python 3。将其转换为 Python 2 使用非常容易,您只需实现自己的缓存方案而不是 lru_cache 即可。您确实需要缓存,否则f对于除了最小的Dyck字长之外的所有字长来说都慢得难以忍受。

from itertools import product
from functools import lru_cache

# Generate all Dyck words of length 2*num, recursively
# fastest, but not lexicographically ordered
def solve(num, cache = {0: ['']}):
    if num not in cache:
        cache[num] = ['0%s1%s' % t for i in range(1, num + 1)
            for t in product(solve(i - 1), solve(num - i))]
    return cache[num]

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# A helper function for `unrank`
# f(i, j) gives the number of paths between (0,0) and (i, j) not crossing
# the diagonal x == y of the grid. Paths consist of horizontal and vertical
# segments only, no diagonals are permitted

@lru_cache(None)
def f(i, j):
    if j == 0:
        return 1
    if j == 1:
        return i
    #if i < j:
        #return 0
    if i == j:
        return f(i, i - 1)
    # 1 < j < i <= n
    return f(i - 1, j) + f(i, j - 1)

# Determine the position array of a Dyck word from its rank number, 
# The position array gives the indices of the 1s in the word; 
# the rank number is the word's index in the lexicographic sequence
# of all Dyck words of length 2n 
# Very slow
def unrank(nr, n):
    b = [-1]
    for i in range(n):
        b.append(1 + max(b[-1], 2 * i))
        ni = n - i - 1
        for j in range(n + i - b[-1], 0, -1):
            delta = f(ni, j)
            if nr < delta or b[-1] >= n + i:
                break
            nr -= delta
            b[-1] += 1
    return b[1:]

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Generate all Dyck word position arrays for words of length 2*n, iteratively
def pos_dyck_words(n):
    b = list(range(1, 2 * n, 2))
    while True:
        yield b
        for i in range(n - 2, -1, -1):
            if b[i] < n + i:
                b[i] += 1
                for j in range(i + 1, n - 1):
                    b[j] = 1 + max(b[j - 1], 2 * j)
                break
        else:
            break

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Convert a position array to a Dyck word
def pos_to_word(b, n, chars='01'):
    c0, c1 = chars
    word = [c0] * (2 * n)
    for i in b:
        word[i] = c1
    return ''.join(word)

# Some tests

num = 4
print('num: {}, Catalan number: {}'.format(num, f(num, num)))

words = list(solve(num))
words.sort(reverse=True)
print(len(words))

for i, u in enumerate(pos_dyck_words(num)):
    v = unrank(i, num)
    w = words[i]
    ok = u == v and pos_to_word(u, num) == w
    print('{:2} {} {} {} {}'.format(i, u, v, w, ok))
print()

num = 10
print('num: {}, Catalan number: {}'.format(num, f(num, num)))

for i, u in enumerate(pos_dyck_words(num)):
    v = unrank(i, num)
    assert u == v, (i, u, v)
print('ok')

输出

num: 4, Catalan number: 14
14
 0 [1, 3, 5, 7] [1, 3, 5, 7] 01010101 True
 1 [1, 3, 6, 7] [1, 3, 6, 7] 01010011 True
 2 [1, 4, 5, 7] [1, 4, 5, 7] 01001101 True
 3 [1, 4, 6, 7] [1, 4, 6, 7] 01001011 True
 4 [1, 5, 6, 7] [1, 5, 6, 7] 01000111 True
 5 [2, 3, 5, 7] [2, 3, 5, 7] 00110101 True
 6 [2, 3, 6, 7] [2, 3, 6, 7] 00110011 True
 7 [2, 4, 5, 7] [2, 4, 5, 7] 00101101 True
 8 [2, 4, 6, 7] [2, 4, 6, 7] 00101011 True
 9 [2, 5, 6, 7] [2, 5, 6, 7] 00100111 True
10 [3, 4, 5, 7] [3, 4, 5, 7] 00011101 True
11 [3, 4, 6, 7] [3, 4, 6, 7] 00011011 True
12 [3, 5, 6, 7] [3, 5, 6, 7] 00010111 True
13 [4, 5, 6, 7] [4, 5, 6, 7] 00001111 True

num: 10, Catalan number: 16796
ok

Here's some code that's essentially a compact version of JPvdMerwe's code, except that it returns the list of solutions rather than printing them. This code works on both Python 2 and Python 3.

from itertools import product

def solve(num, cache={0: ['']}):
    if num not in cache:
        cache[num] = ['(%s)%s' % t for i in range(1, num + 1)
            for t in product(solve(i - 1), solve(num - i))]
    return cache[num]

# Test

for num in range(1, 5):
    print(num)
    for s in solve(num):
        print(s)

output

1
()
2
()()
(())
3
()()()
()(())
(())()
(()())
((()))
4
()()()()
()()(())
()(())()
()(()())
()((()))
(())()()
(())(())
(()())()
((()))()
(()()())
(()(()))
((())())
((()()))
(((())))

Here are a couple more functions, derived from the pseudocode given in the article linked by Ed Guiness: Generating and ranking of Dyck words. That article uses 1-based indexing, but I've converted them to conform with Python's 0-based indexing.

These functions are slower than the solve function above, but they may still be useful. pos_dyck_words has the advantage that it's purely iterative. unrank is iterative, but it calls the recursive helper function f; OTOH, f uses caching, so it's not as slow as it could be, and it's only caching integers, which uses less RAM than the string caching of solve. The main benefit of unrank is that it can return an individual solution from its index number rather than having to produce all solutions of a given size.

This code is for Python 3 only. It's easy enough to convert it for Python 2 use, you just have to implement your own caching scheme instead of lru_cache. You do need caching, otherwise f is intolerably slow for all but the smallest Dyck word lengths.

from itertools import product
from functools import lru_cache

# Generate all Dyck words of length 2*num, recursively
# fastest, but not lexicographically ordered
def solve(num, cache = {0: ['']}):
    if num not in cache:
        cache[num] = ['0%s1%s' % t for i in range(1, num + 1)
            for t in product(solve(i - 1), solve(num - i))]
    return cache[num]

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# A helper function for `unrank`
# f(i, j) gives the number of paths between (0,0) and (i, j) not crossing
# the diagonal x == y of the grid. Paths consist of horizontal and vertical
# segments only, no diagonals are permitted

@lru_cache(None)
def f(i, j):
    if j == 0:
        return 1
    if j == 1:
        return i
    #if i < j:
        #return 0
    if i == j:
        return f(i, i - 1)
    # 1 < j < i <= n
    return f(i - 1, j) + f(i, j - 1)

# Determine the position array of a Dyck word from its rank number, 
# The position array gives the indices of the 1s in the word; 
# the rank number is the word's index in the lexicographic sequence
# of all Dyck words of length 2n 
# Very slow
def unrank(nr, n):
    b = [-1]
    for i in range(n):
        b.append(1 + max(b[-1], 2 * i))
        ni = n - i - 1
        for j in range(n + i - b[-1], 0, -1):
            delta = f(ni, j)
            if nr < delta or b[-1] >= n + i:
                break
            nr -= delta
            b[-1] += 1
    return b[1:]

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Generate all Dyck word position arrays for words of length 2*n, iteratively
def pos_dyck_words(n):
    b = list(range(1, 2 * n, 2))
    while True:
        yield b
        for i in range(n - 2, -1, -1):
            if b[i] < n + i:
                b[i] += 1
                for j in range(i + 1, n - 1):
                    b[j] = 1 + max(b[j - 1], 2 * j)
                break
        else:
            break

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Convert a position array to a Dyck word
def pos_to_word(b, n, chars='01'):
    c0, c1 = chars
    word = [c0] * (2 * n)
    for i in b:
        word[i] = c1
    return ''.join(word)

# Some tests

num = 4
print('num: {}, Catalan number: {}'.format(num, f(num, num)))

words = list(solve(num))
words.sort(reverse=True)
print(len(words))

for i, u in enumerate(pos_dyck_words(num)):
    v = unrank(i, num)
    w = words[i]
    ok = u == v and pos_to_word(u, num) == w
    print('{:2} {} {} {} {}'.format(i, u, v, w, ok))
print()

num = 10
print('num: {}, Catalan number: {}'.format(num, f(num, num)))

for i, u in enumerate(pos_dyck_words(num)):
    v = unrank(i, num)
    assert u == v, (i, u, v)
print('ok')

output

num: 4, Catalan number: 14
14
 0 [1, 3, 5, 7] [1, 3, 5, 7] 01010101 True
 1 [1, 3, 6, 7] [1, 3, 6, 7] 01010011 True
 2 [1, 4, 5, 7] [1, 4, 5, 7] 01001101 True
 3 [1, 4, 6, 7] [1, 4, 6, 7] 01001011 True
 4 [1, 5, 6, 7] [1, 5, 6, 7] 01000111 True
 5 [2, 3, 5, 7] [2, 3, 5, 7] 00110101 True
 6 [2, 3, 6, 7] [2, 3, 6, 7] 00110011 True
 7 [2, 4, 5, 7] [2, 4, 5, 7] 00101101 True
 8 [2, 4, 6, 7] [2, 4, 6, 7] 00101011 True
 9 [2, 5, 6, 7] [2, 5, 6, 7] 00100111 True
10 [3, 4, 5, 7] [3, 4, 5, 7] 00011101 True
11 [3, 4, 6, 7] [3, 4, 6, 7] 00011011 True
12 [3, 5, 6, 7] [3, 5, 6, 7] 00010111 True
13 [4, 5, 6, 7] [4, 5, 6, 7] 00001111 True

num: 10, Catalan number: 16796
ok
情话墙 2024-10-12 04:05:29

我提出了以下算法,该算法不是按照 OP 的要求进行递归的,但鉴于其无敌的效率,值得一提。

正如 Ed Guness' 中所述 postN 对正确匹配的括号组成的字符串是 Dyck 单词的表示。在另一种有用的表示中,括号()分别替换为10。因此,()()() 变为 101010。后者也可以看作是(十进制)数字42的二进制表示。总之,一些整数可以表示正确匹配的括号对的字符串。使用这种表示,以下是生成 Dyck 作品的有效算法。

integer 为任何 C/C++(或者可能是 C 系列编程语言)最长 64 位的无符号整数类型。给定一个 Dyck 单词,以下代码将返回下一个相同大小的 Dyck 单词(前提是它存在)。

integer next_dyck_word(integer w) {
    integer const a = w & -w;
    integer const b = w + a;
    integer c = w ^ b;
    c = (c / a >> 2) + 1;
    c = ((c * c - 1) & 0xaaaaaaaaaaaaaaaa) | b;
    return c;
} 

例如,如果 w == 42(二进制的 101010,即 ()()()),则函数返回 44101100()(()))。可以迭代,直到得到 56 (111000, ((()))),这是 N == 的最大 Dyck 单词3.

上面,我提到了无敌的效率,因为就单个 Dyck 词的生成而言,该算法是 O(1)、无循环、无分支的。然而,实施仍有改进的空间。事实上,如果我们可以使用一些严格符合标准的 C/C++ 中不可用的汇编指令,则可以消除函数体中相对昂贵的除法 c / a

你可能会说。 “反对!我不想受到 N <= 64 的限制”。好吧,我对此的回答是,如果您想生成所有 Dyck 作品,那么实际上您已经绑定了比 64 小得多的大小。事实上,戴克作品大小 N 的数量呈阶乘增长N 并且对于 N == 64 生成它们的时间可能比宇宙的年龄还要长。 (我承认我这次没有计算,但这是此类性质问题的一个非常常见的轶事特征。)

我写了一个 算法的详细文档

I came up with the following algorithm which is not recursive as requested by the OP but it is worth mentioning given its invincible efficiency.

As said in Ed Guiness' post, strings of N pairs of correctly matched parentheses is a representation of a Dyck word. In another useful representation, parentheses ( and ) are replaced with 1 and 0 respectively. Hence, ()()() becomes 101010. The latter can also be seen as the binary representation of (decimal) number 42. In summary, some integer numbers can represent strings of correctly matched pairs of parentheses. Using this representation the following is an efficient algorithm to generate Dyck works.

Let integer be any C/C++ (or, possibly, and member of the the C-family programming languages) unsigned integer type up to 64-bits long. Given a Dyck word the following code returns the next Dyck word of the same size, provided it exists.

integer next_dyck_word(integer w) {
    integer const a = w & -w;
    integer const b = w + a;
    integer c = w ^ b;
    c = (c / a >> 2) + 1;
    c = ((c * c - 1) & 0xaaaaaaaaaaaaaaaa) | b;
    return c;
} 

For instance, if w == 42 (101010 in binary, i.e., ()()()) the function returns 44 (101100, ()(())). One can iterate until getting 56 (111000, ((()))) which is the maximum Dyck word for N == 3.

Above, I've mentioned invincible efficiency because, as far as generation of a single Dyck word is concerned, this algorithm is O(1), loopless and branchless. However, the implementation still has room for improvement. Indeed, the relatively expensive division c / a in the body of the function can be eliminated if we can use some assembly instructions that are not available in strict Standard compliant C/C++.

You might say. "Objection! I do not want to be constraint to N <= 64". Well, my answer to that is that if you want to generate all Dyck works, then in practice you are already bound to a much lower size than 64. Indeed, the number of Dyck works of size N grows factorially with N and for N == 64 the time to generate them all is likely to be greater than the age of the universe. (I confess I did not calculate this time but this is a quite common anecdotal feature of problems of this nature.)

I've written a detailed document on the algorithm.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文