在 OpenSceneGraph 中实现平面上对象的搜索行为?
我创建了一个开放的平面区域,上面有像冰球一样的薄圆柱体,它们在该区域周围弹跳,并对也放置在平面上的一些较大圆柱体进行碰撞检测。我正在尝试使用转向方法让它们朝着飞机上的设定点前进。
转向的工作原理是通过计算与障碍物的距离,然后计算行进方向与障碍物方向之间的角度,利用与障碍物的距离的计算来避开障碍物,当冰球太近时,它会根据计算出的距离向左或向右转向角度。相反的相同技术无法用于转向某个点,我尝试使用 acos 和 atan2 来计算行进方向和目标方向之间的角度,并且从输出中相信这一点是正确的,但是当我尝试使用该计算来确定何时朝着目标前进我得到了意想不到的结果。有时随意转弯?
#include "Puck.h"
#include <iostream>
#include <fstream>
using namespace std;
#include <math.h>
ofstream fout("danna.txt");
#ifndef M_PI
#define M_PI 3.1415
#endif
class TranslateCB : public osg::NodeCallback
{
public:
TranslateCB() : _dx( 0. ), _dy( 0. ), _dirx(1), _diry(0), _inc(0.1), _theta(0) {}
TranslateCB(Puck** pp, Obstacle** ob, int count, double r, double x, double y) : _dx( 0. ), _dy( 0. ),
_dirx(2.0*rand()/RAND_MAX-1), _diry(2.0*rand()/RAND_MAX-1), _inc(0.3), _theta(0)
{
obstacles = ob;
ob_count = count;
_radius = r;
_x = x;
_y = y;
puckH = pp;
}
virtual void operator()( osg::Node* node,osg::NodeVisitor* nv )
{
osg::MatrixTransform* mt =
dynamic_cast<osg::MatrixTransform*>( node );
osg::Matrix mR, mT;
mT.makeTranslate( _dx , _dy, 0. );
mt->setMatrix( mT );
double ob_dirx;
double ob_diry;
double ob_dist;
double centerX=0, centerY =0;
_theta = 0;
double min = 4;
// location that I am trying to get the pucks to head towards
centerX = 1;
centerY = 5;
double tDirx = (_x+_dx) - centerX;
double tDiry = (_y+_dy) - centerY;
double tDist = sqrt(tDirx*tDirx+tDiry*tDiry); //distance to target location
// normalizing my target direction
tDirx = tDirx/tDist;
tDiry = tDiry/tDist;
double hDist = sqrt(_dirx*_dirx + _diry*_diry); //distance to next heading
_dirx= _dirx/hDist;
_diry= _diry/hDist;
double cAngle = acos(_dirx*tDirx+_diry*tDiry); //using inverse of cos to calculate angle between directions
double tAngle = atan2(centerY - (_y+_dy),centerX - (_x+_dx)); // using inverse of tan to calculate angle between directions
double tMin = tDist*sin(cAngle);
//if statement used to define when to apply steering direction
if(tMin > 3)
{
if(tDist < 1){ _theta = 0; } //puck is inside target location, so keep travelling straight
if(cAngle > M_PI/2){ _theta = -0.1; } //turn left
else{ _theta = 0.1; } //turn right
}
else{ _theta = 0; }
////// The collision detection for the obstacles that works on the same princables that I am using above
for(int i = 0; i < ob_count; i++)
{
ob_dirx = (_x+_dx) - obstacles[i]->x;
ob_diry = (_y+_dy) - obstacles[i]->y;
ob_dist = sqrt(ob_dirx*ob_dirx+ob_diry*ob_diry);
if (ob_dist < 3) {
//normalise directions
double ob_norm = sqrt(ob_dirx*ob_dirx+ob_diry*ob_diry);
ob_dirx = (ob_dirx)/ob_norm;
ob_diry = (ob_diry)/ob_norm;
double norm = sqrt(_dirx*_dirx+_diry*_diry);
_dirx = (_dirx)/norm;
_diry = (_diry)/norm;
//calculate angle between direction travelling, and direction to obstacle
double angle = acos(_dirx*ob_dirx + _diry*ob_diry);
//calculate closest distance between puck and obstacle if continues on same path
double min_dist = ob_dist*sin(angle);
if(min_dist < _radius + obstacles[i]->radius && ob_dist < min+obstacles[i]->radius)
{
min = ob_dist;
if(ob_dist < _radius + obstacles[i]->radius){ _theta = 0; }
else if(angle <= M_PI/2){ _theta = -0.3; }
else{ _theta = 0.3; }
}
}
}
//change direction accordingly
_dirx = _dirx*cos(_theta) + _diry*sin(_theta);
_diry = _diry*cos(_theta) - _dirx*sin(_theta);
_dx += _inc*_dirx;
if((_x+_dx > 20 && _dirx > 0) || (_x+_dx < -20 && _dirx < 0))
{
_dirx = -_dirx;
_diry += (0.2*rand()/RAND_MAX-0.1); //add randomness to bounce
}
_dy += _inc*_diry;
if((_y+_dy > 20 && _diry > 0) || (_y+_dy < -20 && _diry < 0))
{
_diry = -_diry;
_dirx += (0.2*rand()/RAND_MAX-0.1); //add randomness to bounce
}
traverse( node, nv );
}
private:
double _dx,_dy;
double _dirx,_diry;
double _inc;
double _theta;
double _radius;
double _x,_y;
Obstacle** obstacles;
Puck** puckH;
int ob_count;
};
Puck::Puck()
{
}
void Puck::createBoids (Puck** pucks, Group *root, Obstacle** obstacles, int count, double xx, double yy)
{
// geometry
radius = 0.2;
x = xx;
y = yy;
ob_count = count;
Cylinder *shape=new Cylinder(Vec3(x,y,0),radius,0.1);
ShapeDrawable *draw=new ShapeDrawable(shape);
draw->setColor(Vec4(1,0,0,1));
Geode *geode=new Geode();
geode->addDrawable(draw);
// transformation
MatrixTransform *T=new MatrixTransform();
TranslateCB *tcb = new TranslateCB(pucks, obstacles,ob_count,radius,x,y);
T->setUpdateCallback(tcb);
T->addChild(geode);
root->addChild(T);
}
任何帮助都会很棒!
I have created an open plane area with thin cylinders on it like pucks, they bounce around the area and have collision detection for some larger cylinders also placed on the plane. I am trying to get them to now head towards a set point on the plane using a steering method.
The steering works for works for avoiding the obstacles by calculating distance from obstacle then calculating angle between direction travelling and the direction of the obstacle, using the calculation of the distance from obstacle when the puck is too close it steers left or right based on the calculated angle. The same technique reversed fails to work for steering towards a point, I have tried using both acos and atan2 to calculate the angle between direction travelling and target direction and from outputs believe this bit is right but when I try to use that calculation to determine when to steer towards the target I get unexpected results. Sometimes random turning?
#include "Puck.h"
#include <iostream>
#include <fstream>
using namespace std;
#include <math.h>
ofstream fout("danna.txt");
#ifndef M_PI
#define M_PI 3.1415
#endif
class TranslateCB : public osg::NodeCallback
{
public:
TranslateCB() : _dx( 0. ), _dy( 0. ), _dirx(1), _diry(0), _inc(0.1), _theta(0) {}
TranslateCB(Puck** pp, Obstacle** ob, int count, double r, double x, double y) : _dx( 0. ), _dy( 0. ),
_dirx(2.0*rand()/RAND_MAX-1), _diry(2.0*rand()/RAND_MAX-1), _inc(0.3), _theta(0)
{
obstacles = ob;
ob_count = count;
_radius = r;
_x = x;
_y = y;
puckH = pp;
}
virtual void operator()( osg::Node* node,osg::NodeVisitor* nv )
{
osg::MatrixTransform* mt =
dynamic_cast<osg::MatrixTransform*>( node );
osg::Matrix mR, mT;
mT.makeTranslate( _dx , _dy, 0. );
mt->setMatrix( mT );
double ob_dirx;
double ob_diry;
double ob_dist;
double centerX=0, centerY =0;
_theta = 0;
double min = 4;
// location that I am trying to get the pucks to head towards
centerX = 1;
centerY = 5;
double tDirx = (_x+_dx) - centerX;
double tDiry = (_y+_dy) - centerY;
double tDist = sqrt(tDirx*tDirx+tDiry*tDiry); //distance to target location
// normalizing my target direction
tDirx = tDirx/tDist;
tDiry = tDiry/tDist;
double hDist = sqrt(_dirx*_dirx + _diry*_diry); //distance to next heading
_dirx= _dirx/hDist;
_diry= _diry/hDist;
double cAngle = acos(_dirx*tDirx+_diry*tDiry); //using inverse of cos to calculate angle between directions
double tAngle = atan2(centerY - (_y+_dy),centerX - (_x+_dx)); // using inverse of tan to calculate angle between directions
double tMin = tDist*sin(cAngle);
//if statement used to define when to apply steering direction
if(tMin > 3)
{
if(tDist < 1){ _theta = 0; } //puck is inside target location, so keep travelling straight
if(cAngle > M_PI/2){ _theta = -0.1; } //turn left
else{ _theta = 0.1; } //turn right
}
else{ _theta = 0; }
////// The collision detection for the obstacles that works on the same princables that I am using above
for(int i = 0; i < ob_count; i++)
{
ob_dirx = (_x+_dx) - obstacles[i]->x;
ob_diry = (_y+_dy) - obstacles[i]->y;
ob_dist = sqrt(ob_dirx*ob_dirx+ob_diry*ob_diry);
if (ob_dist < 3) {
//normalise directions
double ob_norm = sqrt(ob_dirx*ob_dirx+ob_diry*ob_diry);
ob_dirx = (ob_dirx)/ob_norm;
ob_diry = (ob_diry)/ob_norm;
double norm = sqrt(_dirx*_dirx+_diry*_diry);
_dirx = (_dirx)/norm;
_diry = (_diry)/norm;
//calculate angle between direction travelling, and direction to obstacle
double angle = acos(_dirx*ob_dirx + _diry*ob_diry);
//calculate closest distance between puck and obstacle if continues on same path
double min_dist = ob_dist*sin(angle);
if(min_dist < _radius + obstacles[i]->radius && ob_dist < min+obstacles[i]->radius)
{
min = ob_dist;
if(ob_dist < _radius + obstacles[i]->radius){ _theta = 0; }
else if(angle <= M_PI/2){ _theta = -0.3; }
else{ _theta = 0.3; }
}
}
}
//change direction accordingly
_dirx = _dirx*cos(_theta) + _diry*sin(_theta);
_diry = _diry*cos(_theta) - _dirx*sin(_theta);
_dx += _inc*_dirx;
if((_x+_dx > 20 && _dirx > 0) || (_x+_dx < -20 && _dirx < 0))
{
_dirx = -_dirx;
_diry += (0.2*rand()/RAND_MAX-0.1); //add randomness to bounce
}
_dy += _inc*_diry;
if((_y+_dy > 20 && _diry > 0) || (_y+_dy < -20 && _diry < 0))
{
_diry = -_diry;
_dirx += (0.2*rand()/RAND_MAX-0.1); //add randomness to bounce
}
traverse( node, nv );
}
private:
double _dx,_dy;
double _dirx,_diry;
double _inc;
double _theta;
double _radius;
double _x,_y;
Obstacle** obstacles;
Puck** puckH;
int ob_count;
};
Puck::Puck()
{
}
void Puck::createBoids (Puck** pucks, Group *root, Obstacle** obstacles, int count, double xx, double yy)
{
// geometry
radius = 0.2;
x = xx;
y = yy;
ob_count = count;
Cylinder *shape=new Cylinder(Vec3(x,y,0),radius,0.1);
ShapeDrawable *draw=new ShapeDrawable(shape);
draw->setColor(Vec4(1,0,0,1));
Geode *geode=new Geode();
geode->addDrawable(draw);
// transformation
MatrixTransform *T=new MatrixTransform();
TranslateCB *tcb = new TranslateCB(pucks, obstacles,ob_count,radius,x,y);
T->setUpdateCallback(tcb);
T->addChild(geode);
root->addChild(T);
}
any help would be amazing!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这里的问题是,当冰球朝向障碍物时,总是会出现“有效”避开障碍物的技术。这种特殊的条件使得冰球的方向和障碍物的方向都位于相邻象限内。
然而,当尝试使冰球转向障碍物时,该技术会失败,因为冰球很可能会远离障碍物,不再具有目标向量和方向向量位于相邻象限的条件。
确定转向方向的正确方法是将目标矢量旋转一定角度,使方向矢量在象限 (0, 1) 中指向垂直方向。现在目标向量相对于方向向量 (0, 1),查看目标向量的 x 分量将确定转向方向。如果目标矢量的 x 分量为负,冰球必须向左转以转向目标(增加角度)。如果目标矢量的 x 分量为正,则冰球必须右转以转向目标(减小角度)。
考虑下面用 python 编写的代码片段来验证这一点,它应该仍然很容易阅读,让您掌握这个概念:
我想我可以用 C++ 编写这个,但与运行 python 提示符相比,这是一个巨大的痛苦。它与我可以编写的任何伪代码一样可读,并且无论使用何种语言,这些概念都将起作用。
The problem here is that the technique that "works" for avoiding obstacles will always occur when the puck is heading towards the obstacle. This special condition makes both the direction of the puck and the direction of the obstacle in adjacent quadrants.
When attempting to make the pucks steer towards the obstacle however, the technique breaks down because the puck most likely will be heading away from the obstacle, no longer having the condition that the target and direction vectors are in adjacent quadrants.
The correct way to determine the steering direction is to rotate the target vector by an angle that would make the the direction vector point straight up in the quadrants (0, 1). Now that the target vector is relative to the direction vector (0, 1) looking at the x component of the target vector will determine the steering direction. If the x component of the target vector is negative, the puck must turn left to steer towards the target (increase the angle). If the x component of the target vector is positive, the puck must turn right to steer towards the target (decrease the angle).
Consider the following snippet written in python to verify this, it should still be easy to read for you to grasp the concept:
I suppose I could've written this in C++, but compared to running a python prompt it's a royal pain. It is as readable as any pseudo code I could've written and the concepts will work regardless of language.