有限状态机和死锁
这是我的问题
,我知道两个无死锁状态机的踪迹。
我想知道痕迹(我不知道结构),组合是否没有死锁。
有什么定理可以知道吗?
This is my problem
I know traces of two state machines that are deadlock free.
I want to know with the traces (I dont know estructure) , if the composition is deadlock free.
Any theorem to know is this is possible to know?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如果您确实正在处理组合(使用初始参数运行机器 A,然后使用 A 的最终参数作为初始参数运行机器 B),那么组合中的死锁必然会发生在 A 或 B 中。
它不会发生在 A 中(因为如果 B 不存在,它也会发生),并且它不能在 B 中发生(因为如果 A 不存在并且您对 B 使用相同的初始参数,它也会发生)。因此,基于 A 和 B 是无死锁的初始假设,它们的组合也是无死锁的。
If you are indeed dealing with composition (run machine A with initial parameters, then machine B using final parameters of A as initial parameters), then a deadlock in the composition would necessarily happen either in A or in B.
It cannot happen in A (because then, it would also happen if B was not present), and it cannot happen in B (because then, it would also happen if A was not present and you used those same initial parameters for B). Therefore, based on the initial assumptions that A and B are deadlock-free, so is their composition.