如果索引是 DATETIME 或 DATETIME2,为什么索引可能不会做太多事情,因为它们包含时间部分?

发布于 2024-10-03 15:59:09 字数 1002 浏览 4 评论 0原文

问题“如何减少简单的响应时间”的评论select 查询?” 告诉:

  • “LaunchDate 上的数据类型是什么?如果是 DATETIME 或 DATETIME2,索引不太可能起多大作用,因为它们包含时间部分 – OMG Ponies”

  • “@OMG - 为什么不在 DateTime 上建立聚集索引列提高性能?查询是范围扫描,因为所有数据都在顺序块中,因此可以进行快速范围索引查找? Calgary Coder"

  • "Calgary Coder: DATETIME/2 包括时间 -- 索引、聚集或非聚集、对于具有重复时间但不具有范围的日期很有用。 – OMG Ponies”

我在 DATETIME 类型列 LaunchDate 上创建了一个带有聚集索引的测试表,并观察索引查找类似于上述问题中引用的查询:

SELECT COUNT(primaryKeyColumn) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

而不是表或索引扫描为什么

DateTime 列上的聚集索引不能提高性能?
如果是 DATETIMEDATETIME2,为什么索引不太可能发挥作用,因为它们包含时间部分?

我希望有一个脚本说明 DATETIME 列的索引不会提高性能。

更新:此外,OMG 是否暗示 DATE 类型列上的索引会有帮助,但对 DATETIMEDATETIME2 没有帮助?

Comments to question "How to decrease response time of a simple select query?" tell:

  • "What is the data type on LaunchDate? An index isn't likely to do much if it's DATETIME or DATETIME2 because they include the time portion – OMG Ponies"

  • "@OMG - Why wouldn't a Clustered Index on a DateTime column improve performance? The query is a range scan which would allow for a fast range index lookup as all data would be in sequential blocks? Semi-related...msdn.microsoft.com/en-us/library/ms177416.aspx – Calgary Coder"

  • "Calgary Coder: DATETIME/2 includes time -- an index, clustered or non-clustered, would be good for dates with duplicate times but not ranges. – OMG Ponies"

I created a test table with clustered index on DATETIME type column LaunchDate and observe index seeks for queries similar to cited in above question:

SELECT COUNT(primaryKeyColumn) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

instead of table or index scans.

Why wouldn't a clustered index on a DateTime column improve performance?
Why isn't index likely to do much if it's DATETIME or DATETIME2 because they include the time portion?

I'd appreciate a script illustrating that indexing of DATETIME column does not improve performance.

Update: Also, Did OMG imply that index on DATE type column would be helpful but not DATETIME and DATETIME2?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

智商已欠费 2024-10-10 15:59:09

我读过另一个问题,不知道 OMG 小马意味着什么

3 点

  • 索引是否聚集或非聚集并不重要:
  • 时间是否也包含在内并不重要
  • 。 有用

只需搜索或扫描

:根据统计数据,如果LaunchDate > > @date 表示 90% 的行,那么很可能会发生扫描。如果它是非常有选择性的,那么寻找的可能性就更大。

不管集群还是非集群!

什么索引?

像这样的查询需要 LaunchDate 和 PrimaryKeyColumn 上的索引

SELECT COUNT(primaryKeyColumn) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

现在,任何非聚集索引都指默认情况下假定为 PK 的聚集索引。因此,primaryKeyColumn 已经隐式包含在内。

迷信

但是,COUNT(primaryKeyColumn) 是一种迷信。因为 PKs 不允许 NULL,所以相当于

SELECT COUNT(*) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

SELECT COUNT(1) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

所以你只需要 LaunchDate 上的索引,无论是聚簇还是非聚簇

I've read the other question, no idea what OMG ponies means

3 points:

  • It shouldn't matter if an index is clustered or non-clustered:
  • It doesn't matter whether time is included too
  • It just has to be useful

Seek or scan:

Based on statistics, if LaunchDate > @date means, say, 90% of the rows, then most likely a scan will happen. If it is quite selective, then a seek is more likely.

Regardless of clustered or non-clustered!

What index?

A query like this would require an index on LaunchDate and primaryKeyColumn

SELECT COUNT(primaryKeyColumn) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

Now, any non-clustered index refers to the clustered index which is assumed to the PK by default. So primaryKeyColumn is implicitly included already.

Superstition

However, COUNT(primaryKeyColumn) is a superstition. Because PKs do not allow NULL, it is equivalent to

SELECT COUNT(*) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

SELECT COUNT(1) 
FROM   MarketPlan 
WHERE  LaunchDate > @date

So you only need an index on LaunchDate, whether clustered or non-clustered

眼眸印温柔 2024-10-10 15:59:09

如果您的应用程序使用日期时间,则不会使用日期列上的索引,这会导致隐式数据类型转换。如果您查看执行计划,您可以看到有一个内部函数应用于列。解决方案是将日期列更改为时间戳(4)或调整客户端应用程序以使用日期而不是日期时间。

Index on a date column will not be use if your application use datetime which cause implicit data type conversion . If you look on the execution plan you can see that there is an internal function applied to a column. Solution is change the date column to timestamp(4) or adjust client application to use date instead of datetime.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文