寻找最大值
如何通过Mathematica、Matlab等计算机软件求下列最大值或上界:$\sup\frac{(1+s)^{4}+(s+t)^{4}+t^{4 }}{1+s^{4}+t^{4}}$
?
除了数值近似之外,准确的最大值是多少?
谢谢。
How to find the following Maximum or supremum by computer software such as Mathematica and Matlab: $\sup\frac{(1+s)^{4}+(s+t)^{4}+t^{4}}{1+s^{4}+t^{4}}$
?
Instead of numerical approximation, what is the accurate maximum?
Thanks.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
由于这个问题看起来有点像家庭作业,所以这里的答案有点像讲座:
s
和t
变小并变大时,函数会发生什么情况较大的正值和负值;这将帮助您确定应该检查的值范围; Mathematica 和 Matlab 都可以帮助您解决这个问题;Plot3D[]
函数和 Matlabplot()
函数都将很有用;s
(或t
) 常量,并绘制该部分的二维图功能;再次,了解该函数的行为方式;如果这太困难,那么您可以使用Mathematica函数
NMaximize[]
。我不认为 Matlab 具有与内置符号函数相同的功能,您必须进行数字计算,但函数findmax
会有所帮助。Since the question seems a bit like homework, here's an answer that starts a bit like a lecture:
s
andt
go to small and to large positive and negative values; this will help you to identify the range of values you should be examining; both Mathematica and Matlab can help your figure this out;Plot3D[]
function and the Matlabplot()
function will both be useful;s
(ort
) constant, and make a 2D plot of the section function; again, develop some understanding of how the function behaves;s,t
values around the maxima of the function and get an acceptably accurate result.If this is too difficult then you could use the Mathematica function
NMaximize[]
. I don't think that Matlab has the same functionality for symbolic functions built-in and you'll have to do the computations numerically but the functionfindmax
will help.在 Matlab 中,可以创建一个具有 s 和 t 值的向量/矩阵,以及一个具有函数值的相应向量。然后,您可以使用 Mathematica 中的函数
max
来确定最大值,如下所示使用
FindMaximum
:这将搜索从 (s,t)=(0,0) 开始的最大值。
有关详细信息,请参阅 http://reference.wolfram.com/mathematica/ref/FindMaximum。 html
In Matlab, one would create a vector/matrix with s and t values, and a corresponding vector with the function values. Then you can pinpoint the maximum using the function
max
In Mathematica, use
FindMaximum
like this:This searches for a maximum starting from (s,t)=(0,0).
For more info, see http://reference.wolfram.com/mathematica/ref/FindMaximum.html