如何使用标准 Scala 类在 Scala 中解析 JSON?

发布于 2024-10-03 00:01:50 字数 687 浏览 3 评论 0原文

我正在使用 Scala 2.8 中的 JSON 类构建来解析 JSON 代码。由于依赖性最小化,我不想使用 Liftweb 之一或任何其他。

我这样做的方式似乎太必要了,有更好的方法吗?

import scala.util.parsing.json._
...
val json:Option[Any] = JSON.parseFull(jsonString)
val map:Map[String,Any] = json.get.asInstanceOf[Map[String, Any]]
val languages:List[Any] = map.get("languages").get.asInstanceOf[List[Any]]
languages.foreach( langMap => {
val language:Map[String,Any] = langMap.asInstanceOf[Map[String,Any]]
val name:String = language.get("name").get.asInstanceOf[String]
val isActive:Boolean = language.get("is_active").get.asInstanceOf[Boolean]
val completeness:Double = language.get("completeness").get.asInstanceOf[Double]
}

I am using the build in JSON class in Scala 2.8 to parse JSON code. I don't want to use the Liftweb one or any other due to minimizing dependencies.

The way I am doing it seems too imperative, is there a better way to do it?

import scala.util.parsing.json._
...
val json:Option[Any] = JSON.parseFull(jsonString)
val map:Map[String,Any] = json.get.asInstanceOf[Map[String, Any]]
val languages:List[Any] = map.get("languages").get.asInstanceOf[List[Any]]
languages.foreach( langMap => {
val language:Map[String,Any] = langMap.asInstanceOf[Map[String,Any]]
val name:String = language.get("name").get.asInstanceOf[String]
val isActive:Boolean = language.get("is_active").get.asInstanceOf[Boolean]
val completeness:Double = language.get("completeness").get.asInstanceOf[Double]
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(8

菊凝晚露 2024-10-10 00:01:51
val jsonString =
  """
    |{
    | "languages": [{
    |     "name": "English",
    |     "is_active": true,
    |     "completeness": 2.5
    | }, {
    |     "name": "Latin",
    |     "is_active": false,
    |     "completeness": 0.9
    | }]
    |}
  """.stripMargin

val result = JSON.parseFull(jsonString).map {
  case json: Map[String, List[Map[String, Any]]] =>
    json("languages").map(l => (l("name"), l("is_active"), l("completeness")))
}.get

println(result)

assert( result == List(("English", true, 2.5), ("Latin", false, 0.9)) )
val jsonString =
  """
    |{
    | "languages": [{
    |     "name": "English",
    |     "is_active": true,
    |     "completeness": 2.5
    | }, {
    |     "name": "Latin",
    |     "is_active": false,
    |     "completeness": 0.9
    | }]
    |}
  """.stripMargin

val result = JSON.parseFull(jsonString).map {
  case json: Map[String, List[Map[String, Any]]] =>
    json("languages").map(l => (l("name"), l("is_active"), l("completeness")))
}.get

println(result)

assert( result == List(("English", true, 2.5), ("Latin", false, 0.9)) )
甜心小果奶 2024-10-10 00:01:51

你可以这样做!非常容易解析 JSON 代码:P

package org.sqkb.service.common.bean

import java.text.SimpleDateFormat

import org.json4s
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._
//import org.sqkb.service.common.kit.{IsvCode}

import scala.util.Try

/**
  *
  */
case class Order(log: String) {

  implicit lazy val formats = org.json4s.DefaultFormats

  lazy val json: json4s.JValue = parse(log)

  lazy val create_time: String = (json \ "create_time").extractOrElse("1970-01-01 00:00:00")
  lazy val site_id: String = (json \ "site_id").extractOrElse("")
  lazy val alipay_total_price: Double = (json \ "alipay_total_price").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val gmv: Double = alipay_total_price
  lazy val pub_share_pre_fee: Double = (json \ "pub_share_pre_fee").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val profit: Double = pub_share_pre_fee

  lazy val trade_id: String = (json \ "trade_id").extractOrElse("")
  lazy val unid: Long = Try((json \ "unid").extractOpt[String].filter(_.nonEmpty).get.toLong).getOrElse(0L)
  lazy val cate_id1: Int = (json \ "cate_id").extractOrElse(0)
  lazy val cate_id2: Int = (json \ "subcate_id").extractOrElse(0)
  lazy val cate_id3: Int = (json \ "cate_id3").extractOrElse(0)
  lazy val cate_id4: Int = (json \ "cate_id4").extractOrElse(0)
  lazy val coupon_id: Long = (json \ "coupon_id").extractOrElse(0)

  lazy val platform: Option[String] = Order.siteMap.get(site_id)


  def time_fmt(fmt: String = "yyyy-MM-dd HH:mm:ss"): String = {
    val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
    val date = dateFormat.parse(this.create_time)
    new SimpleDateFormat(fmt).format(date)
  }

}

You can do like this! Very easy to parse JSON code :P

package org.sqkb.service.common.bean

import java.text.SimpleDateFormat

import org.json4s
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._
//import org.sqkb.service.common.kit.{IsvCode}

import scala.util.Try

/**
  *
  */
case class Order(log: String) {

  implicit lazy val formats = org.json4s.DefaultFormats

  lazy val json: json4s.JValue = parse(log)

  lazy val create_time: String = (json \ "create_time").extractOrElse("1970-01-01 00:00:00")
  lazy val site_id: String = (json \ "site_id").extractOrElse("")
  lazy val alipay_total_price: Double = (json \ "alipay_total_price").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val gmv: Double = alipay_total_price
  lazy val pub_share_pre_fee: Double = (json \ "pub_share_pre_fee").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val profit: Double = pub_share_pre_fee

  lazy val trade_id: String = (json \ "trade_id").extractOrElse("")
  lazy val unid: Long = Try((json \ "unid").extractOpt[String].filter(_.nonEmpty).get.toLong).getOrElse(0L)
  lazy val cate_id1: Int = (json \ "cate_id").extractOrElse(0)
  lazy val cate_id2: Int = (json \ "subcate_id").extractOrElse(0)
  lazy val cate_id3: Int = (json \ "cate_id3").extractOrElse(0)
  lazy val cate_id4: Int = (json \ "cate_id4").extractOrElse(0)
  lazy val coupon_id: Long = (json \ "coupon_id").extractOrElse(0)

  lazy val platform: Option[String] = Order.siteMap.get(site_id)


  def time_fmt(fmt: String = "yyyy-MM-dd HH:mm:ss"): String = {
    val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
    val date = dateFormat.parse(this.create_time)
    new SimpleDateFormat(fmt).format(date)
  }

}
红墙和绿瓦 2024-10-10 00:01:51

这是我使用 Scala Parser Combinator Library 的方式:

import scala.util.parsing.combinator._
class ImprovedJsonParser extends JavaTokenParsers {

  def obj: Parser[Map[String, Any]] =
    "{" ~> repsep(member, ",") <~ "}" ^^ (Map() ++ _)

  def array: Parser[List[Any]] =
    "[" ~> repsep(value, ",") <~ "]"

  def member: Parser[(String, Any)] =
    stringLiteral ~ ":" ~ value ^^ { case name ~ ":" ~ value => (name, value) }

  def value: Parser[Any] = (
    obj
      | array
      | stringLiteral
      | floatingPointNumber ^^ (_.toDouble)
      |"true"
      |"false"
    )

}
object ImprovedJsonParserTest extends ImprovedJsonParser {
  def main(args: Array[String]) {
    val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin


    val result = parseAll(value, jsonString)
    println(result)

  }
}

This is the way I do the Scala Parser Combinator Library:

import scala.util.parsing.combinator._
class ImprovedJsonParser extends JavaTokenParsers {

  def obj: Parser[Map[String, Any]] =
    "{" ~> repsep(member, ",") <~ "}" ^^ (Map() ++ _)

  def array: Parser[List[Any]] =
    "[" ~> repsep(value, ",") <~ "]"

  def member: Parser[(String, Any)] =
    stringLiteral ~ ":" ~ value ^^ { case name ~ ":" ~ value => (name, value) }

  def value: Parser[Any] = (
    obj
      | array
      | stringLiteral
      | floatingPointNumber ^^ (_.toDouble)
      |"true"
      |"false"
    )

}
object ImprovedJsonParserTest extends ImprovedJsonParser {
  def main(args: Array[String]) {
    val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin


    val result = parseAll(value, jsonString)
    println(result)

  }
}
柠檬 2024-10-10 00:01:51

scala.util.parsing.json.JSON 已弃用。

这是 circe 的另一种方法。仅供参考的文档:https://circe.github.io/circe/cursors.html

build.sbt中添加依赖,我使用的是scala 2.13.4,注意scala版本必须与库版本一致。

val circeVersion = "0.14.0-M2"

libraryDependencies ++= Seq(
  "io.circe"  %% "circe-core"     % circeVersion,
  "io.circe"  %% "circe-generic"  % circeVersion,
  "io.circe"  %% "circe-parser"   % circeVersion
)

示例1:

case class Person(name: String, age: Int)

object Main {
  def main(args: Array[String]): Unit = {
    val input =
      """
        |{
        |  "kind": "Listing",
        |  "data": [
        |    {
        |      "name": "Frodo",
        |      "age": 51
        |    },
        |    {
        |      "name": "Bilbo",
        |      "age": 60
        |    }
        |  ]
        |}
        |""".stripMargin

    implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person] // decoder required to parse to custom object

    val parseResult: Json = circe.parser.parse(input).getOrElse(Json.Null)
    val data: ACursor = parseResult.hcursor.downField("data") // get the data field
    val personList: List[Person] = data.as[List[Person]].getOrElse(null) // parse the dataField to a list of Person
    for {
      person <- personList
    } println(person.name + " is " + person.age)
  }
}

示例2,json有一个对象中的对象:

case class Person(name: String, age: Int, position: Position)
case class Position(x: Int, y: Int)

object Main {
  def main(args: Array[String]): Unit = {
    val input =
      """
        |{
        |  "kind": "Listing",
        |  "data": [
        |    {
        |      "name": "Frodo",
        |      "age": 51,
        |      "position": {
        |        "x": 10,
        |        "y": 20
        |      }
        |    },
        |    {
        |      "name": "Bilbo",
        |      "age": 60,
        |      "position": {
        |        "x": 75,
        |        "y": 85
        |      }
        |    }
        |  ]
        |}
        |""".stripMargin

    implicit val decoderPosition: Decoder[Position] = deriveDecoder[Position] // must be defined before the Person decoder
    implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person]

    val parseResult = circe.parser.parse(input).getOrElse(Json.Null)
    val data = parseResult.hcursor.downField("data")
    val personList = data.as[List[Person]].getOrElse(null)
    for {
      person <- personList
    } println(person.name + " is " + person.age + " at " + person.position)
  }
}

scala.util.parsing.json.JSON is deprecated.

Here is another approach with circe. FYI documentation: https://circe.github.io/circe/cursors.html

Add the dependency in build.sbt, I used scala 2.13.4, note the scala version must align with the library version.

val circeVersion = "0.14.0-M2"

libraryDependencies ++= Seq(
  "io.circe"  %% "circe-core"     % circeVersion,
  "io.circe"  %% "circe-generic"  % circeVersion,
  "io.circe"  %% "circe-parser"   % circeVersion
)

Example 1:

case class Person(name: String, age: Int)

object Main {
  def main(args: Array[String]): Unit = {
    val input =
      """
        |{
        |  "kind": "Listing",
        |  "data": [
        |    {
        |      "name": "Frodo",
        |      "age": 51
        |    },
        |    {
        |      "name": "Bilbo",
        |      "age": 60
        |    }
        |  ]
        |}
        |""".stripMargin

    implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person] // decoder required to parse to custom object

    val parseResult: Json = circe.parser.parse(input).getOrElse(Json.Null)
    val data: ACursor = parseResult.hcursor.downField("data") // get the data field
    val personList: List[Person] = data.as[List[Person]].getOrElse(null) // parse the dataField to a list of Person
    for {
      person <- personList
    } println(person.name + " is " + person.age)
  }
}

Example 2, json has an object within an object:

case class Person(name: String, age: Int, position: Position)
case class Position(x: Int, y: Int)

object Main {
  def main(args: Array[String]): Unit = {
    val input =
      """
        |{
        |  "kind": "Listing",
        |  "data": [
        |    {
        |      "name": "Frodo",
        |      "age": 51,
        |      "position": {
        |        "x": 10,
        |        "y": 20
        |      }
        |    },
        |    {
        |      "name": "Bilbo",
        |      "age": 60,
        |      "position": {
        |        "x": 75,
        |        "y": 85
        |      }
        |    }
        |  ]
        |}
        |""".stripMargin

    implicit val decoderPosition: Decoder[Position] = deriveDecoder[Position] // must be defined before the Person decoder
    implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person]

    val parseResult = circe.parser.parse(input).getOrElse(Json.Null)
    val data = parseResult.hcursor.downField("data")
    val personList = data.as[List[Person]].getOrElse(null)
    for {
      person <- personList
    } println(person.name + " is " + person.age + " at " + person.position)
  }
}
甜嗑 2024-10-10 00:01:50

这是一个基于提取器的解决方案,它将执行类转换:

class CC[T] { def unapply(a:Any):Option[T] = Some(a.asInstanceOf[T]) }

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin

val result = for {
    Some(M(map)) <- List(JSON.parseFull(jsonString))
    L(languages) = map("languages")
    M(language) <- languages
    S(name) = language("name")
    B(active) = language("is_active")
    D(completeness) = language("completeness")
} yield {
    (name, active, completeness)
}

assert( result == List(("English",true,2.5), ("Latin",false,0.9)))

在 for 循环开始时,我人为地将结果包装在列表中,以便它在末尾生成一个列表。然后,在 for 循环的其余部分中,我使用生成器(使用 <-)和值定义(使用 =)将利用 unapply 方法的事实。

(较旧的答案已被编辑 - 如果您好奇,请检查编辑历史记录)

This is a solution based on extractors which will do the class cast:

class CC[T] { def unapply(a:Any):Option[T] = Some(a.asInstanceOf[T]) }

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin

val result = for {
    Some(M(map)) <- List(JSON.parseFull(jsonString))
    L(languages) = map("languages")
    M(language) <- languages
    S(name) = language("name")
    B(active) = language("is_active")
    D(completeness) = language("completeness")
} yield {
    (name, active, completeness)
}

assert( result == List(("English",true,2.5), ("Latin",false,0.9)))

At the start of the for loop I artificially wrap the result in a list so that it yields a list at the end. Then in the rest of the for loop I use the fact that generators (using <-) and value definitions (using =) will make use of the unapply methods.

(Older answer edited away - check edit history if you're curious)

谁许谁一生繁华 2024-10-10 00:01:50

这是我进行模式匹配的方式:

val result = JSON.parseFull(jsonStr)
result match {
  // Matches if jsonStr is valid JSON and represents a Map of Strings to Any
  case Some(map: Map[String, Any]) => println(map)
  case None => println("Parsing failed")
  case other => println("Unknown data structure: " + other)
}

This is the way I do the pattern match:

val result = JSON.parseFull(jsonStr)
result match {
  // Matches if jsonStr is valid JSON and represents a Map of Strings to Any
  case Some(map: Map[String, Any]) => println(map)
  case None => println("Parsing failed")
  case other => println("Unknown data structure: " + other)
}
鸠书 2024-10-10 00:01:50

我喜欢@huynhjl 的回答,它引导我走上了正确的道路。但是,它不擅长处理错误情况。如果所需的节点不存在,则会出现强制转换异常。我对此进行了稍微调整,以利用 Option 更好地处理这个问题。

class CC[T] {
  def unapply(a:Option[Any]):Option[T] = if (a.isEmpty) {
    None
  } else {
    Some(a.get.asInstanceOf[T])
  }
}

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

for {
  M(map) <- List(JSON.parseFull(jsonString))
  L(languages) = map.get("languages")
  language <- languages
  M(lang) = Some(language)
  S(name) = lang.get("name")
  B(active) = lang.get("is_active")
  D(completeness) = lang.get("completeness")
} yield {
  (name, active, completeness)
}

当然,这与其说是处理错误,不如说是避免错误。如果缺少任何 json 节点,这将产生一个空列表。您可以在执行操作之前使用 match 检查节点是否存在...

for {
  M(map) <- Some(JSON.parseFull(jsonString))
} yield {
  map.get("languages") match {
    case L(languages) => {
      for {
        language <- languages
        M(lang) = Some(language)
        S(name) = lang.get("name")
        B(active) = lang.get("is_active")
        D(completeness) = lang.get("completeness")
      } yield {
        (name, active, completeness)
      }        
    }
    case None => "bad json"
  }
}

I like @huynhjl's answer, it led me down the right path. However, it isn't great at handling error conditions. If the desired node does not exist, you get a cast exception. I've adapted this slightly to make use of Option to better handle this.

class CC[T] {
  def unapply(a:Option[Any]):Option[T] = if (a.isEmpty) {
    None
  } else {
    Some(a.get.asInstanceOf[T])
  }
}

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

for {
  M(map) <- List(JSON.parseFull(jsonString))
  L(languages) = map.get("languages")
  language <- languages
  M(lang) = Some(language)
  S(name) = lang.get("name")
  B(active) = lang.get("is_active")
  D(completeness) = lang.get("completeness")
} yield {
  (name, active, completeness)
}

Of course, this doesn't handle errors so much as avoid them. This will yield an empty list if any of the json nodes are missing. You can use a match to check for the presence of a node before acting...

for {
  M(map) <- Some(JSON.parseFull(jsonString))
} yield {
  map.get("languages") match {
    case L(languages) => {
      for {
        language <- languages
        M(lang) = Some(language)
        S(name) = lang.get("name")
        B(active) = lang.get("is_active")
        D(completeness) = lang.get("completeness")
      } yield {
        (name, active, completeness)
      }        
    }
    case None => "bad json"
  }
}
风轻花落早 2024-10-10 00:01:50

我尝试了一些方法,倾向于将模式匹配作为避免强制转换的一种方式,但在集合类型上的类型擦除方面遇到了麻烦。

主要问题似乎是解析结果的完整类型反映了 JSON 数据的结构,并且要么很麻烦,要么无法完全说明。我想这就是为什么使用 Any 来截断类型定义的原因。使用 Any 会导致需要进行强制转换。

我已经破解了下面的一些内容,该内容很简洁,但对于问题中的代码隐含的 JSON 数据非常具体。更通用的东西会更令人满意,但我不确定它是否会非常优雅。

implicit def any2string(a: Any)  = a.toString
implicit def any2boolean(a: Any) = a.asInstanceOf[Boolean]
implicit def any2double(a: Any)  = a.asInstanceOf[Double]

case class Language(name: String, isActive: Boolean, completeness: Double)

val languages = JSON.parseFull(jstr) match {
  case Some(x) => {
    val m = x.asInstanceOf[Map[String, List[Map[String, Any]]]]

    m("languages") map {l => Language(l("name"), l("isActive"), l("completeness"))}
  }
  case None => Nil
}

languages foreach {println}

I tried a few things, favouring pattern matching as a way of avoiding casting but ran into trouble with type erasure on the collection types.

The main problem seems to be that the complete type of the parse result mirrors the structure of the JSON data and is either cumbersome or impossible to fully state. I guess that is why Any is used to truncate the type definitions. Using Any leads to the need for casting.

I've hacked something below which is concise but is extremely specific to the JSON data implied by the code in the question. Something more general would be more satisfactory but I'm not sure if it would be very elegant.

implicit def any2string(a: Any)  = a.toString
implicit def any2boolean(a: Any) = a.asInstanceOf[Boolean]
implicit def any2double(a: Any)  = a.asInstanceOf[Double]

case class Language(name: String, isActive: Boolean, completeness: Double)

val languages = JSON.parseFull(jstr) match {
  case Some(x) => {
    val m = x.asInstanceOf[Map[String, List[Map[String, Any]]]]

    m("languages") map {l => Language(l("name"), l("isActive"), l("completeness"))}
  }
  case None => Nil
}

languages foreach {println}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文