OWL通用量化
给出的例子是
EquivalentClasses(
:HappyPerson
ObjectAllValuesFrom( :hasChild :HappyPerson )
)
它说某人是一个幸福的人,如果他所有的孩子是快乐的人。但如果 John Doe 没有孩子,他能成为 HappyPerson 的一个实例吗?他的父母呢?
我也觉得这部分很令人困惑,它说:
因此,根据我们上述的说法,每个没有孩子的人都可以称为幸福的。
但它不会违反 ObjectAllValuesFrom() 构造函数吗?
I am half way reading the OWL2 primer and is having problem understanding the universal quantification
The example given is
EquivalentClasses(
:HappyPerson
ObjectAllValuesFrom( :hasChild :HappyPerson )
)
It says somebody is a happy person exactly if all their children are happy persons. But what if John Doe has no children can he be an instance of HappyPerson? What about his parent?
I also find this part very confusing, it says:
Hence, by our above statement, every childless person would be qualified as happy.
but wouldn't it violate the ObjectAllValuesFrom() constructor?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我认为底漆实际上在解释这一点方面做得很好,特别是下列:
为了进一步简化这一点,请考虑您给出的表达式:
HappyPerson ≡ ∀ hasChild 。 HappyPerson
这表示
HappyPerson
是指仅拥有同样HappyPerson
(也快乐)的孩子的人。从逻辑上讲,这实际上并没有说明快乐儿童的存在。它只是作为对可能存在的任何子级的通用约束(请注意,这包括没有任何子级的HappyPerson
的任何实例)。将此与 存在量词 进行比较,exists (∃):
HappyPerson ≡ ∃ hasChild 。 HappyPerson
这表示
HappyPerson
是指拥有至少一个孩子也是HappyPerson
的人。与 (∀) 相比,这个表达式实际上意味着HappyPerson
的每个实例都存在一个快乐的孩子。尽管最初并不直观,但答案在于一阶逻辑(实际上是描述逻辑)中
ObjectAllValuesFrom
OWL 构造的解释/语义。从根本上来说,ObjectAllValuesFrom
构造与逻辑全称量词 (∀) 相关,并且ObjectSomeValuesFrom
构造与逻辑存在量词 (∃) 相关。I think the primer actually does quite a good job at explaining this, particularly the following:
To simplify this a bit further, consider the expression you've given:
HappyPerson ≡ ∀ hasChild . HappyPerson
This says that a
HappyPerson
is someone who only has children who are alsoHappyPerson
(are also happy). Logically, this actually says nothing about the existence of instances of happy children. It simply serves as a universal constraint on any children that may exist (note that this includes any instances ofHappyPerson
that don't have any children).Compare this to the existential quantifier, exists (∃):
HappyPerson ≡ ∃ hasChild . HappyPerson
This says that a
HappyPerson
is someone who has at least one child that is also aHappyPerson
. In constrast to (∀), this expression actually implies the existence of a happy child for every instance of aHappyPerson
.The answer, albeit initially unintuitive, lies in the interpretation/semantics of the
ObjectAllValuesFrom
OWL construct in first-order logic (actually, Description Logic). Fundamentally, theObjectAllValuesFrom
construct relates to the logical universal quantifier (∀), and theObjectSomeValuesFrom
construct relates to the logical existential quantifier (∃).我在阅读“OWL 2 Web Ontology Language Primer(第二版 - 2012)”时遇到了同样的问题,并且我不相信 Sharky 的答案澄清了这个问题。
书中在第15页介绍全称量词∀时指出:
“另一种属性限制,称为通用量化,用于描述一类个体,其中所有相关个体都必须是给定类的实例。我们可以使用以下语句来表明,如果某人的所有孩子都幸福,那么他就是一个幸福的人人”。
[我省略了不同语法中的OWL语句,它们可以在书中找到。]
我认为作者所说的更正式且可能不那么含糊的表示是
(1) HappyPerson = {x | ∀y (x HasChild y → y ∈ HappyPerson)}
我希望每个读者都能理解这个符号,因为我发现答案中使用的符号不太清楚(或者可能是我不习惯它)。
本书如下:
“……对于普遍的角色限制存在一个特别的误解。作为一个例子,考虑一下上面的幸福公理。直观的解读表明,为了幸福,一个人必须至少有一个幸福的孩子[我的笔记:实际上该定义指出,为了让他/她的父母幸福,每个孩子都应该幸福,而不仅仅是一个孩子,这似乎是作者的失误]然而,情况并非如此:任何个体都应该幸福。 hasChild 不是属性的“起点”,它是通过 hasChild 的通用量化定义的任何类的类成员,因此,根据我们的上述声明,每个没有孩子的人都将被视为“幸福的”。
也就是说,作者指出(假设“~”表示逻辑“非”),给定
(2) ChildessPerson = { x | ~∃y( x HasChild y)}
那么 (1) 和 ∀ 的含义意味着
(3) ChildessPerson ⊂ HappyPerson
这对我来说似乎不正确。
如果这是真的,那么每个孩子,只要他/她没有孩子,都是幸福的,所以只有一些父母会是不幸福的人。
考虑这个模型:
并且 c 不快乐(独立于封闭世界或开放世界假设)。这是一个可能的模型,它歪曲了作者的论点。
I am facing the same kind of issue while reading the "OWL 2 Web Ontology Language Primer (Second Edition - 2012)" and I am not convinced that the answer by Sharky clarifies the issue.
At page 15, when introducing the universal quantifier ∀, the book states:
"Another property restriction, called universal quantification is used to describe a class of individuals for which all related individuals must be instances of a given class. We can use the following statement to indicate that somebody is a happy person exactly if all their children are happy persons."
[I omit the OWL statements in the different sintaxes, they can be found in the book.]
I think that a more formal and may be less ambiguos representation of what the author states is
(1) HappyPerson = {x | ∀y (x HasChild y → y ∈ HappyPerson)}
I hope every reader understands this notation, because I find the notation used in the answer less clear (or may be I am just not accustomed to it).
The book proceeds:
"... There is one particular misconception concerning the universal role restriction. As an example, consider the above happiness axiom. The intuitive reading suggests that in order to be happy, a person must have at least one happy child [my note: actually the definition states that every children should be happy, not just at least one, in order for his/her parents to be happy. This appears to be a lapsus of the author]. Yet, this is not the case: any individual that is not a “starting point” of the property hasChild is a class member of any class defined by universal quantification over hasChild. Hence, by our above statement, every childless person would be qualified as happy . ..."
That is, the author states that (assume '~' for logical NOT), given
(2) ChildessPerson = { x | ~∃y( x HasChild y)}
then (1) and the meaning of ∀ imply
(3) ChildessPerson ⊂ HappyPerson
This does not seem true to me.
If it were true then every child, as far as s/he is a childless person, is happy and so only some parents can be unhappy persons.
Consider this model:
and c is unhappy (independently from the close world or open world assumption). It is a possible model, which falsifies the thesis of the author.