OWL通用量化

发布于 2024-10-02 20:29:44 字数 510 浏览 3 评论 0原文

我正在阅读 OWL2 入门,并且在理解 通用量化

给出的例子是

EquivalentClasses(
    :HappyPerson 
    ObjectAllValuesFrom( :hasChild :HappyPerson )
)

它说某人是一个幸福的人,如果他所有的孩子是快乐的人。但如果 John Doe 没有孩子,他能成为 HappyPerson 的一个实例吗?他的父母呢?

我也觉得这部分很令人困惑,它说:

因此,根据我们上述的说法,每个没有孩子的人都可以称为幸福的。

但它不会违反 ObjectAllValuesFrom() 构造函数吗?

I am half way reading the OWL2 primer and is having problem understanding the universal quantification

The example given is

EquivalentClasses(
    :HappyPerson 
    ObjectAllValuesFrom( :hasChild :HappyPerson )
)

It says somebody is a happy person exactly if all their children are happy persons. But what if John Doe has no children can he be an instance of HappyPerson? What about his parent?

I also find this part very confusing, it says:

Hence, by our above statement, every childless person would be qualified as happy.

but wouldn't it violate the ObjectAllValuesFrom() constructor?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

过去的过去 2024-10-09 20:29:44

我认为底漆实际上在解释这一点方面做得很好,特别是下列:

自然
使用的语言指标
通用量化是词
例如“仅”、“仅”或
“没什么,只是。”

为了进一步简化这一点,请考虑您给出的表达式:

HappyPerson ≡ ∀ hasChild 。 HappyPerson

这表示 HappyPerson 是指拥有同样 HappyPerson(也快乐)的孩子的人。从逻辑上讲,这实际上并没有说明快乐儿童的存在。它只是作为对可能存在的任何子级的通用约束(请注意,这包括没有任何子级的 HappyPerson 的任何实例)。

将此与 存在量词 进行比较,exists (∃):

HappyPerson ≡ ∃ hasChild 。 HappyPerson

这表示 HappyPerson 是指拥有至少一个孩子也是 HappyPerson 的人。与 (∀) 相比,这个表达式实际上意味着 HappyPerson 的每个实例都存在一个快乐的孩子。

尽管最初并不直观,但答案在于一阶逻辑(实际上是描述逻辑)中 ObjectAllValuesFrom OWL 构造的解释/语义。从根本上来说,ObjectAllValuesFrom 构造与逻辑全称量词 (∀) 相关,并且 ObjectSomeValuesFrom 构造与逻辑存在量词 (∃) 相关。

I think the primer actually does quite a good job at explaining this, particularly the following:

Natural
language indicators for the usage of
universal quantification are words
like “only,” “exclusively,” or
“nothing but.”

To simplify this a bit further, consider the expression you've given:

HappyPerson ≡ ∀ hasChild . HappyPerson

This says that a HappyPerson is someone who only has children who are also HappyPerson (are also happy). Logically, this actually says nothing about the existence of instances of happy children. It simply serves as a universal constraint on any children that may exist (note that this includes any instances of HappyPerson that don't have any children).

Compare this to the existential quantifier, exists (∃):

HappyPerson ≡ ∃ hasChild . HappyPerson

This says that a HappyPerson is someone who has at least one child that is also a HappyPerson. In constrast to (∀), this expression actually implies the existence of a happy child for every instance of a HappyPerson.

The answer, albeit initially unintuitive, lies in the interpretation/semantics of the ObjectAllValuesFrom OWL construct in first-order logic (actually, Description Logic). Fundamentally, the ObjectAllValuesFrom construct relates to the logical universal quantifier (∀), and the ObjectSomeValuesFrom construct relates to the logical existential quantifier (∃).

柏林苍穹下 2024-10-09 20:29:44

我在阅读“OWL 2 Web Ontology Language Primer(第二版 - 2012)”时遇到了同样的问题,并且我不相信 Sharky 的答案澄清了这个问题。

书中在第15页介绍全称量词∀时指出:
“另一种属性限制,称为通用量化,用于描述一类个体,其中所有相关个体都必须是给定类的实例。我们可以使用以下语句来表明,如果某人的所有孩子都幸福,那么他就是一个幸福的人人”。
[我省略了不同语法中的OWL语句,它们可以在书中找到。]
我认为作者所说的更正式且可能不那么含糊的表示是

(1) HappyPerson = {x | ∀y (x HasChild y → y ∈ HappyPerson)}

我希望每个读者都能理解这个符号,因为我发现答案中使用的符号不太清楚(或者可能是我不习惯它)。

本书如下:
“……对于普遍的角色限制存在一个特别的误解。作为一个例子,考虑一下上面的幸福公理。直观的解读表明,为了幸福,一个人必须至少有一个幸福的孩子[我的笔记:实际上该定义指出,为了让他/她的父母幸福,每个孩子都应该幸福,而不仅仅是一个孩子,这似乎是作者的失误]然而,情况并非如此:任何个体都应该幸福。 hasChild 不是属性的“起点”,它是通过 hasChild 的通用量化定义的任何类的类成员,因此,根据我们的上述声明,每个没有孩子的人都将被视为“幸福的”。
也就是说,作者指出(假设“~”表示逻辑“非”),给定

(2) ChildessPerson = { x | ~∃y( x HasChild y)}

那么 (1) 和 ∀ 的含义意味着

(3) ChildessPerson ⊂ HappyPerson

这对我来说似乎不正确。
如果这是真的,那么每个孩子,只要他/她没有孩子,都是幸福的,所以只有一些父母会是不幸福的人。

考虑这个模型:

Persons = {a,b,c},HasChild = {(a,b)},HappyPerson={a,b}

并且 c 不快乐(独立于封闭世界或开放世界假设)。这是一个可能的模型,它歪曲了作者的论点。

I am facing the same kind of issue while reading the "OWL 2 Web Ontology Language Primer (Second Edition - 2012)" and I am not convinced that the answer by Sharky clarifies the issue.

At page 15, when introducing the universal quantifier ∀, the book states:
"Another property restriction, called universal quantification is used to describe a class of individuals for which all related individuals must be instances of a given class. We can use the following statement to indicate that somebody is a happy person exactly if all their children are happy persons."
[I omit the OWL statements in the different sintaxes, they can be found in the book.]
I think that a more formal and may be less ambiguos representation of what the author states is

(1) HappyPerson = {x | ∀y (x HasChild y → y ∈ HappyPerson)}

I hope every reader understands this notation, because I find the notation used in the answer less clear (or may be I am just not accustomed to it).

The book proceeds:
"... There is one particular misconception concerning the universal role restriction. As an example, consider the above happiness axiom. The intuitive reading suggests that in order to be happy, a person must have at least one happy child [my note: actually the definition states that every children should be happy, not just at least one, in order for his/her parents to be happy. This appears to be a lapsus of the author]. Yet, this is not the case: any individual that is not a “starting point” of the property hasChild is a class member of any class defined by universal quantification over hasChild. Hence, by our above statement, every childless person would be qualified as happy . ..."
That is, the author states that (assume '~' for logical NOT), given

(2) ChildessPerson = { x | ~∃y( x HasChild y)}

then (1) and the meaning of ∀ imply

(3) ChildessPerson ⊂ HappyPerson

This does not seem true to me.
If it were true then every child, as far as s/he is a childless person, is happy and so only some parents can be unhappy persons.

Consider this model:

Persons = {a,b,c}, HasChild = {(a,b)}, HappyPerson={a,b}

and c is unhappy (independently from the close world or open world assumption). It is a possible model, which falsifies the thesis of the author.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文