情感分析词典

发布于 2024-10-02 09:54:37 字数 56 浏览 5 评论 0 原文

我想知道是否有人知道我在哪里可以获得正面和负面单词的词典。我正在研究情绪分析,这是其中的关键部分。

I was wondering if anybody knew where I could obtain dictionaries of positive and negative words. I'm looking into sentiment analysis and this is a crucial part of it.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(9

葬花如无物 2024-10-09 09:54:38

匹兹堡大学的情感词典可能就是您想要的。这是一个大约 8,000 个单词的词典,包含积极/中性/消极情绪。 本文对此进行了更详细的描述,并在通用公共许可证。

The Sentiment Lexicon, at the University of Pittsburgh might be what you are after. It's a lexicon of about 8,000 words with positive/neutral/negative sentiment. It's described in more detail in this paper and released under the GPL.

開玄 2024-10-09 09:54:38

来得有点晚了,我只是注意到字典对情感分析的贡献有限。
一些带有情感的句子不包含任何“情感”词——例如“读这本书”,这在书评中可能是积极的,而在电影评论中可能是消极的。
同样,情感词“不可预测”在惊悚片中可能是积极的,但在描述丰田的休息系统时可能是消极的。

还有更多...

Arriving a bit late I'll just note that dictionaries have a limited contribution for sentiment analysis.
Some sentiment bearing sentences do not contain any "sentiment" word - e.g. "read the book" which could be positive in a book review while negative in a movie review.
Similarly, the sentiment word "unpredictable" could be positive in the context of a thriller but negative when describing the breaks system of the Toyota.

and there are many more...

青瓷清茶倾城歌 2024-10-09 09:54:38

刘兵教授提供了约6800字的英语词典,您可以通过以下链接下载:
意见挖掘、情绪分析和意见垃圾邮件检测

Professor Bing Liu provide an English Lexicon of about 6800 word, you can download form this link:
Opinion Mining, Sentiment Analysis, and Opinion Spam Detection

分開簡單 2024-10-09 09:54:38

2002 年的这篇论文 描述了一种仅使用两个单词作为种子集,自动从文本样本中派生出此类字典的算法。

This paper from 2002 describes an algorithm for deriving such a dictionary from text samples automatically, using only two words as a seed set.

流心雨 2024-10-09 09:54:38

AFINN 您可以在此处找到并动态创建它。就像每当未知的 +ve 单词出现时添加 +1 一样。就像香蕉是新的+ve单词,出现两次就会变成+2。

您抓取的文章和数据越多,您的词典就会变得越强大!

AFINN you can find here and also create it dynamically. Like whenever unknown +ve word comes add it with +1. Like banana is new +ve word and appearing twice then it will become +2.

As much articles and data you craws your dictionary would become stronger!

贱贱哒 2024-10-09 09:54:38

哈佛-IV 词典目录 http://www.wjh.harvard.edu/~inquirer /homecat.htm 至少有两套现成的正向/负向词典。

The Harvard-IV dictionary directory http://www.wjh.harvard.edu/~inquirer/homecat.htm has at least two sets of ready-to-use dictionaries for positive/negative orientation.

东京女 2024-10-09 09:54:38

您可以使用维德情感词典,

from nltk.sentiment.vader import SentimentIntensityAnalyzer

sentence='APPle is good for health'
sid = SentimentIntensityAnalyzer()
ss = sid.polarity_scores(sentence)  
print(ss)

它会给您句子的极性。

输出:

 {'compound': 0.4404, 'neu': 0.58, 'pos': 0.42, 'neg': 0.0}

You can use vader sentiment lexicon

from nltk.sentiment.vader import SentimentIntensityAnalyzer

sentence='APPle is good for health'
sid = SentimentIntensityAnalyzer()
ss = sid.polarity_scores(sentence)  
print(ss)

it will give you the polarity of sentence.

output:

 {'compound': 0.4404, 'neu': 0.58, 'pos': 0.42, 'neg': 0.0}
一个人的旅程 2024-10-09 09:54:38

Sentiwords 给出 155,000 个单词(及其极性,即 -1 和1 代表非常消极到非常积极)。 此处讨论了该词典

Sentiwords gives 155,000 words (and their polarity, that is, a score between -1 and 1 for very negative through to very positive). The lexicon is discussed here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文