仅使用基本构造通过方案创建 n 大小的排列

发布于 2024-10-01 23:02:06 字数 34 浏览 5 评论 0原文

是否可以仅使用基本方案构造来生成列表的 n 大小排列?

Is it possible to generate n-sized permutations of a list using only the basic scheme constructs?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

雨巷深深 2024-10-08 23:02:06

使用define,你可以这样做(如果没有define,答案是否定的,因为你需要使用递归):

首先定义一个函数,它接受一个列表列表和一个值,并返回一个列表列表,其中给定的项目已添加到原始列表列表中的每个列表中。

这可以通过编写一个简单的递归函数来完成,该函数使用 cons 将项目添加到第一个列表(使用 car 获取第一个列表),然后使用 cons 再次将扩展列表添加到在其他列表(即列表列表的cdr)上调用该函数的结果。如果列表为空(因此没有 carcdr),则返回空列表。

您还需要一个从列表中删除给定项目的函数。这也可以通过定义一个接受项目和列表的简单递归函数来完成。在每一步中,如果给定列表的“car”不等于要删除的项目,则应将其添加到递归调用的结果之前。如果相等,则直接返回递归调用的结果。

此外,您还需要一个函数来连接列表。这也可以递归实现,不会太麻烦。

然后定义一个函数,给定一个列表列表和一个项目,以该项目和每个子列表作为其参数调用前一个函数。

现在定义创建 n 大小排列的函数。该函数应采用数字n 和一个列表。如果n是0,它应该返回空列表。否则,它应该为列表中的每个项目 x 递归调用自身,并使用 (- n 1) 作为 n 的新值以及以下结果:从列表中删除 x 作为列表的新值。然后应该连接递归调用的结果。

With define you can do it like this (without define the answer would be no, because you'll need to use recursion):

First define a function that takes a list of lists and a value and returns a list of lists where the given item has been prepended to each list in the original list of lists.

This can be done by writing a simple recursive function that uses cons to prepend the item to the first list (using car to get the first list) and then uses cons again to prepend the extended list to the result of calling the function on the other lists (i.e. on the cdr of the list of lists). If the list is empty (and thus doesn't have a car and cdr), return the empty list.

You'll also need a function that removes a given item from a list. This can also be done by defining a simple recursive function that takes an item and a list. At each step the `car´ of the given list should be prepended to the result of the recursive call if it is not equal to the item that is to be deleted. If it is equal, the result of the recursive call should be returned directly.

Further you'll need a function to concatenate lists. This can also be implemented recursively without too much trouble.

Then define a function that given a list of lists and an item calls the previous function with the item and each sublist as its argument.

Now define the a function that creates n-sized permutations. This function should take the number n and a list. If n is 0, it should return the empty list. Otherwise it should call itself recursively for each item x in the list with (- n 1) as the new value for n and the result of removing x from the list as the new value for the list. Then the results of the recursive calls should be concatenated.

带上头具痛哭 2024-10-08 23:02:06

这是对 Rosetta 中代码的解释,不过,我更改了变量名称以提供帮助使其更具可读性,并添加了我对下面代码的解释。我确实检查了代码在 DrRacket 中是否有效,并且确实有效。

在定义permute之前,需要两个辅助函数,即seqinsert

seq 构建一个包含数字序列的列表。例如(seq 0 3)-> (0 1 2 3)。
列表中的元素(数字)insert函数中使用,以将carItem插入到“cdr<”中的各个位置。 /strong>' 列表。

(define (seq start end) 
  (if (= start end) 
      (list end)    ; if start and end are the same number, we are done
      (cons start (seq (+ start 1) end)) 
      )
  )

insert 生成一个列表,其中 carItem 插入到 cdrList 的第“n”个位置。例如,(insert '(bc) 0 'a) -> '(abc) 和 (插入 '(bc) 2 'a) -> '(BCA)。

(define (insert cdrList n carItem)
  (if (= 0 n)
      (cons carItem cdrList) ; if n is 0, prepend carItem to cdrList
      (cons (car cdrList)  
            (insert (cdr cdrList) (- n 1) carItem))))

最后,主函数permute,以递归的方式使用了insertseq
例如,当 plist = '(b,c) 时,lambda 的值如下:

; (map (lambda (n)
;    (insert '(b c) n 'a))
;    '(0 1 2)) -> output of seq function given n = 2, which is length of '(b c)
; '((a b c) (b a c) (b c a)) ---> will be the output

(define (permute mylist)
  (if (null? mylist)
      '(())
      (apply append (map (lambda (plist)
                           (map (lambda (n)
                                  (insert plist n (car mylist)))
                                (seq 0 (length plist))))
                         (permute (cdr mylist))))))

(permute '(a b c))

如果上面的嵌套 lambda 让你头晕(对我来说就是如此),请在下面找到,恕我直言,一个更具可读性的“定义”版本,感谢 Matthias Felleisen:

(define (permute mylist)
  (cond 
    [(null? mylist) '(())]
    [else 
      (define (genCombinationsFor plist)
      (define (combineAt n) (insert plist n (car mylist)))
        (map combineAt (seq 0 (length plist))))
        (apply append (map genCombinationsFor (permute (cdr mylist))))]))

This is an explanation of the code found in Rosetta, although, I have changed the variable names to help make it more readable, and added my explanation of the code below. I did check to see if the code works in DrRacket, and it does.

Before defining permute, two helper functions are required namely, seq and insert.

seq builds a list containing a sequence of numbers. For example (seq 0 3) -> (0 1 2 3).
The elements (numbers) in the list are used in the insert function to insert the carItem at various positions in the 'cdr' list.

(define (seq start end) 
  (if (= start end) 
      (list end)    ; if start and end are the same number, we are done
      (cons start (seq (+ start 1) end)) 
      )
  )

insert generates a list with the carItem inserted in the "n"th position of the cdrList. For example, (insert '(b c) 0 'a) -> '(a b c) and (insert '(b c) 2 'a) -> '(b c a).

(define (insert cdrList n carItem)
  (if (= 0 n)
      (cons carItem cdrList) ; if n is 0, prepend carItem to cdrList
      (cons (car cdrList)  
            (insert (cdr cdrList) (- n 1) carItem))))

Finally, as for the main function permute, it uses insert and seq in a recursive manner.
For example, when plist = '(b,c) the lambda evals to the following:

; (map (lambda (n)
;    (insert '(b c) n 'a))
;    '(0 1 2)) -> output of seq function given n = 2, which is length of '(b c)
; '((a b c) (b a c) (b c a)) ---> will be the output

(define (permute mylist)
  (if (null? mylist)
      '(())
      (apply append (map (lambda (plist)
                           (map (lambda (n)
                                  (insert plist n (car mylist)))
                                (seq 0 (length plist))))
                         (permute (cdr mylist))))))

(permute '(a b c))

If the above nested lambdas makes your head spin (it did for me), find below, IMHO, a more readable "define" version, thanks to Matthias Felleisen:

(define (permute mylist)
  (cond 
    [(null? mylist) '(())]
    [else 
      (define (genCombinationsFor plist)
      (define (combineAt n) (insert plist n (car mylist)))
        (map combineAt (seq 0 (length plist))))
        (apply append (map genCombinationsFor (permute (cdr mylist))))]))
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文