拓扑排序

发布于 2024-10-01 18:42:07 字数 804 浏览 7 评论 0原文

考虑一下我的教科书中给出的以下拓扑排序算法:

Input: A digraph G with n vertices
Output: A topological ordering v1,v2...vn of G, or the non-existence thereof.

S is an empty stack

for each vertex u in G do
   incount(u) = indeg(u)
   if incount(u) == 0 then
      S.push(u)
i = 1
while S is non-empty do
   u = S.pop()
   set u as the i-th vertex vi
   i ++
   for each vertex w forming the directed edge (u,w) do
      incount(w) --
      if incount(w) == 0 then
         S.push(w)
if S is empty then
   return "G has a dicycle"

我尝试逐字实现该算法,但发现它总是抱怨双循环,无论图是否是非循环的。然后,我发现最后两行不正确。当 S 为空时,紧邻其之前的 while 循环将退出。因此,每次都能确保 if 条件成立。

我怎样才能纠正这个算法以正确检查双轮车?

编辑:

目前,我只是通过检查最后 i 的值来绕过 S 问题:

if i != n + 1
   return "G has a dicycle"

Consider the following algorithm for topological sort given in my textbook:

Input: A digraph G with n vertices
Output: A topological ordering v1,v2...vn of G, or the non-existence thereof.

S is an empty stack

for each vertex u in G do
   incount(u) = indeg(u)
   if incount(u) == 0 then
      S.push(u)
i = 1
while S is non-empty do
   u = S.pop()
   set u as the i-th vertex vi
   i ++
   for each vertex w forming the directed edge (u,w) do
      incount(w) --
      if incount(w) == 0 then
         S.push(w)
if S is empty then
   return "G has a dicycle"

I tried implementing the algorithm word-for-word but found that it always complained of a dicycle, whether the graph was acyclic or not. Then, I discovered that the last 2 lines don't fit in correctly. The while loop immediately prior to it exits when S is empty. So, each time, it is assured that the if condition will hold true.

How can I correct this algorithm to properly check for a dicycle?

Edit:

Presently, I'm simply skirting the S problem, by checking the value of i at the end:

if i != n + 1
   return "G has a dicycle"

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

淡水深流 2024-10-08 18:42:07

您的修复是正确的。如果您没有将图中的所有节点推送到 S 上,则该图至少包含一个强连通分量。换句话说,你有一个循环。

Your fix is correct. If you didn't push all the nodes in the graph onto S, the graph contains at least one strongly connected component. In other words, you have a cycle.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文