用于求解动态规划算法的惯用 Clojure

发布于 2024-10-01 02:13:13 字数 7186 浏览 5 评论 0原文

我决定完成 CLRS 算法简介文本,并巧妙地选择了打印问题 此处

我解决了这个问题,并提出了一个命令式解决方案,该解决方案在 Python 中实现起来很简单,但在 Clojure 中则稍显困难。

我完全无法将计算矩阵函数从我的解决方案转换为惯用的 Clojure。有什么建议吗?以下是计算矩阵函数的伪代码:

// n is the dimension of the square matrix.
// c is the matrix.
function compute-matrix(c, n):
    // Traverse through the left-lower triangular matrix and calculate values.
    for i=2 to n:
        for j=i to n:

            // This is our minimum value sentinal.
            // If we encounter a value lower than this, then we store the new
            // lowest value.
            optimal-cost = INF

            // Index in previous column representing the row we want to point to.
            // Whenever we update 't' with a new lowest value, we need to change
            // 'row' to point to the row we're getting that value from.
            row = 0

            // This iterates through each entry in the previous column.
            // Note: we have a lower triangular matrix, meaning data only
            // exists in the left-lower half.
            // We are on column 'i', but because we're in a left-lower triangular
            // matrix, data doesn't start until row (i-1).
            //
            // Similarly, we go to (j-1) because we can't choose a configuration
            // where the previous column ended on a word who's index is larger
            // than the word index this column starts on - the case which occurs
            // when we go for k=(i-1) to greater than (j-1)
            for k=(i-1) to (j-1):

                // When 'j' is equal to 'n', we are at the last cell and we
                // don't care how much whitespace we have.  Just take the total
                // from the previous cell.
                // Note: if 'j' <  'n', then compute normally.

                if (j < n):
                    z = cost(k + 1, j) + c[i-1, k]

                else:
                    z = c[i-1, k]

                if z < optimal-cost:
                    row = k
                    optimal-cost = z

            c[i,j] = optimal-cost
            c[i,j].row = row

此外,我非常感谢对 Clojure 源代码的其余部分的反馈,特别是关于它的惯用程度。对于迄今为止我编写的 Clojure 代码,我是否能够在命令式范式之外进行充分思考?这里是:

(ns print-neatly)

;-----------------------------------------------------------------------------
; High-order function which returns a function that computes the cost
; for i and j where i is the starting word index and j is the ending word
; index for the word list "word-list."
;
(defn make-cost [word-list max-length]
  (fn [i j]
    (let [total (reduce + (map #(count %1) (subvec word-list i j)))
          result (- max-length (+ (- j i) total))]
      (if (< result 0)
        nil
        (* result result result)))))

;-----------------------------------------------------------------------------
; initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
  (let [; Prepend nil to our collection.
        append-empty
          (fn [v]
            (cons nil v))

        ; Like append-empty; append cost-func for first column.
        append-cost
          (fn [v, index]
            (cons (cost-func 0 index) v))

        ; Define an internal helper which calls append-empty N times to create
        ; a new vector consisting of N nil values.
        ; ie., [nil[0] nil[1] nil[2] ... nil[N]]
        construct-empty-vec
          (fn [n]
            (loop [cnt n coll ()]
              (if (neg? cnt)
                (vec coll)
                (recur (dec cnt) (append-empty coll)))))

        ; Construct the base level where each entry is the basic cost function
        ; calculated for the base level. (ie., starting and ending at the
        ; same word)
        construct-base
          (fn [n]
            (loop [cnt n coll ()]
              (if (neg? cnt)
                (vec coll)
                (recur (dec cnt) (append-cost coll cnt)))))]

    ; The main matrix-construct logic, which just creates a new Nx1 vector
    ; via construct-empty-vec, then prepends that to coll.
    ; We end up with a vector of N entries where each entry is a Nx1 vector.
    (loop [cnt n coll ()]
      (cond
        (zero? cnt) (vec coll)
        (= cnt 1) (recur (dec cnt) (cons (construct-base n) coll))
        :else (recur (dec cnt) (cons (construct-empty-vec n) coll))))))

;-----------------------------------------------------------------------------
; Return the value at a given index in a matrix.
;
(defn matrix-lookup [matrix row col]
  (nth (nth matrix row) col))

;-----------------------------------------------------------------------------
; Return a new matrix M with M[row,col] = value
; but otherwise M[i,j] = matrix[i,j]
;
(defn matrix-set [matrix row col value]
  (let [my-row (nth matrix row)
        my-cel (assoc my-row col value)]
    (assoc matrix row my-cel)))

;-----------------------------------------------------------------------------
; Print the matrix out in a nicely formatted fashion.
;
(defn matrix-print [matrix]
  (doseq [j (range (count matrix))]
    (doseq [i (range (count matrix))]
      (let [el (nth (nth matrix i) j)]
        (print (format "%1$8.8s" el)))) ; 1st item max 8 and min 8 chars
    (println)))


;-----------------------------------------------------------------------------
; Main
;-----------------------------------------------------------------------------


;-----------------------------------------------------------------------------
; Grab all arguments from the command line.
;
(let [line-length (Integer. (first *command-line-args*))
      words (vec (rest *command-line-args*))
      cost (make-cost words line-length)
      matrix (matrix-construct (count words) cost)]
  (matrix-print matrix))

编辑:我已经根据给出的反馈更新了我的矩阵构造函数,所以现在它实际上比我的 Python 实现短了一行。

;-----------------------------------------------------------------------------
; Initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
  (letfn [; Build an n-length vector of nil
          (construct-empty-vec [n]
            (vec (repeat n nil)))

          ; Short-cut so we can use 'map' to apply the cost-func to each
          ; element in a range.
          (my-cost [j]
            (cost-func 0 j))

          ; Construct the base level where each entry is the basic cost function
          ; calculated for the base level. (ie., starting and ending at the
          ; same word)
          (construct-base-vec [n]
            (vec (map my-cost (range n))))]

    ; The main matrix-construct logic, which just creates a new Nx1 vector
    ; via construct-empty-vec, then prepends that to coll.
    ; We end up with a vector of N entries where each entry is a Nx1 vector.
    (let [m (repeat (- n 1) (construct-empty-vec n))]
      (vec (cons (construct-base-vec n) m)))))

I decided to work through the CLRS Introduction to Algorithms text, and picked the printing neatly problem here.

I worked through the problem and came up with an imperative solution which was straightforward to implement in Python, but somewhat less so in Clojure.

I'm completely stumped on translating the compute-matrix function from my solution into idiomatic Clojure. Any suggestions? Here is the pseudocode for the compute-matrix function:

// n is the dimension of the square matrix.
// c is the matrix.
function compute-matrix(c, n):
    // Traverse through the left-lower triangular matrix and calculate values.
    for i=2 to n:
        for j=i to n:

            // This is our minimum value sentinal.
            // If we encounter a value lower than this, then we store the new
            // lowest value.
            optimal-cost = INF

            // Index in previous column representing the row we want to point to.
            // Whenever we update 't' with a new lowest value, we need to change
            // 'row' to point to the row we're getting that value from.
            row = 0

            // This iterates through each entry in the previous column.
            // Note: we have a lower triangular matrix, meaning data only
            // exists in the left-lower half.
            // We are on column 'i', but because we're in a left-lower triangular
            // matrix, data doesn't start until row (i-1).
            //
            // Similarly, we go to (j-1) because we can't choose a configuration
            // where the previous column ended on a word who's index is larger
            // than the word index this column starts on - the case which occurs
            // when we go for k=(i-1) to greater than (j-1)
            for k=(i-1) to (j-1):

                // When 'j' is equal to 'n', we are at the last cell and we
                // don't care how much whitespace we have.  Just take the total
                // from the previous cell.
                // Note: if 'j' <  'n', then compute normally.

                if (j < n):
                    z = cost(k + 1, j) + c[i-1, k]

                else:
                    z = c[i-1, k]

                if z < optimal-cost:
                    row = k
                    optimal-cost = z

            c[i,j] = optimal-cost
            c[i,j].row = row

Additionally, I would very much appreciate feedback on the rest of my Clojure source, specifically with regards to how idiomatic it is. Have I managed to think sufficiently outside of the imperative paradigm for the Clojure code I've written thus far? Here it is:

(ns print-neatly)

;-----------------------------------------------------------------------------
; High-order function which returns a function that computes the cost
; for i and j where i is the starting word index and j is the ending word
; index for the word list "word-list."
;
(defn make-cost [word-list max-length]
  (fn [i j]
    (let [total (reduce + (map #(count %1) (subvec word-list i j)))
          result (- max-length (+ (- j i) total))]
      (if (< result 0)
        nil
        (* result result result)))))

;-----------------------------------------------------------------------------
; initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
  (let [; Prepend nil to our collection.
        append-empty
          (fn [v]
            (cons nil v))

        ; Like append-empty; append cost-func for first column.
        append-cost
          (fn [v, index]
            (cons (cost-func 0 index) v))

        ; Define an internal helper which calls append-empty N times to create
        ; a new vector consisting of N nil values.
        ; ie., [nil[0] nil[1] nil[2] ... nil[N]]
        construct-empty-vec
          (fn [n]
            (loop [cnt n coll ()]
              (if (neg? cnt)
                (vec coll)
                (recur (dec cnt) (append-empty coll)))))

        ; Construct the base level where each entry is the basic cost function
        ; calculated for the base level. (ie., starting and ending at the
        ; same word)
        construct-base
          (fn [n]
            (loop [cnt n coll ()]
              (if (neg? cnt)
                (vec coll)
                (recur (dec cnt) (append-cost coll cnt)))))]

    ; The main matrix-construct logic, which just creates a new Nx1 vector
    ; via construct-empty-vec, then prepends that to coll.
    ; We end up with a vector of N entries where each entry is a Nx1 vector.
    (loop [cnt n coll ()]
      (cond
        (zero? cnt) (vec coll)
        (= cnt 1) (recur (dec cnt) (cons (construct-base n) coll))
        :else (recur (dec cnt) (cons (construct-empty-vec n) coll))))))

;-----------------------------------------------------------------------------
; Return the value at a given index in a matrix.
;
(defn matrix-lookup [matrix row col]
  (nth (nth matrix row) col))

;-----------------------------------------------------------------------------
; Return a new matrix M with M[row,col] = value
; but otherwise M[i,j] = matrix[i,j]
;
(defn matrix-set [matrix row col value]
  (let [my-row (nth matrix row)
        my-cel (assoc my-row col value)]
    (assoc matrix row my-cel)))

;-----------------------------------------------------------------------------
; Print the matrix out in a nicely formatted fashion.
;
(defn matrix-print [matrix]
  (doseq [j (range (count matrix))]
    (doseq [i (range (count matrix))]
      (let [el (nth (nth matrix i) j)]
        (print (format "%1$8.8s" el)))) ; 1st item max 8 and min 8 chars
    (println)))


;-----------------------------------------------------------------------------
; Main
;-----------------------------------------------------------------------------


;-----------------------------------------------------------------------------
; Grab all arguments from the command line.
;
(let [line-length (Integer. (first *command-line-args*))
      words (vec (rest *command-line-args*))
      cost (make-cost words line-length)
      matrix (matrix-construct (count words) cost)]
  (matrix-print matrix))

EDIT: I've updated my matrix-construct function with the feedback given, so now it's actually one line shorter than my Python implementation.

;-----------------------------------------------------------------------------
; Initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
  (letfn [; Build an n-length vector of nil
          (construct-empty-vec [n]
            (vec (repeat n nil)))

          ; Short-cut so we can use 'map' to apply the cost-func to each
          ; element in a range.
          (my-cost [j]
            (cost-func 0 j))

          ; Construct the base level where each entry is the basic cost function
          ; calculated for the base level. (ie., starting and ending at the
          ; same word)
          (construct-base-vec [n]
            (vec (map my-cost (range n))))]

    ; The main matrix-construct logic, which just creates a new Nx1 vector
    ; via construct-empty-vec, then prepends that to coll.
    ; We end up with a vector of N entries where each entry is a Nx1 vector.
    (let [m (repeat (- n 1) (construct-empty-vec n))]
      (vec (cons (construct-base-vec n) m)))))

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

过潦 2024-10-08 02:13:13
  1. 不要使用带有 fn 的 let,而是尝试 letfn。
  2. 剂量q 剂量q -> 可能会更好
  3. 看起来作为理解你的条件/零 ? / = 1 带有大小写的代码会更容易阅读(并且更快)。
  4. 我的蜘蛛感告诉我,这里的循环/递归应该是某种映射调用,而不是
  5. 我强烈怀疑这对于原始数组来说会更快(并且在某些地方可能更干净)
  6. 您可能想使用或查看源代码对于Incanter
  1. Instead of using let with fn's in it, try letfn.
  2. doseq doseq -> looks like it would likely be better as a for comprehension
  3. Your cond / zero? / = 1 code would be easier to read (and faster) with case.
  4. My spidey-sense tells me that the loop/recurs here should be some kind of map call instead
  5. I strongly suspect that this would be far faster with primitive arrays (and possibly cleaner in some places)
  6. You might like to use or look at the source for Incanter
梦冥 2024-10-08 02:13:13

我爬上了墙,能够以一种足够类似于 Clojure 的方式思考,将核心计算矩阵算法转化为可行的程序。

它只比我的 Python 实现长一行,尽管它看起来写得更密集。当然,像“map”和“reduce”这样的概念是更高级别的函数,需要您充分思考。

我相信这个实现也修复了我的 Python 中的一个错误。 :)

;-----------------------------------------------------------------------------
; Compute all table entries so we can compute the optimal cost path and
; reconstruct an optimal solution.
;
(defn compute-matrix [m cost]
  (letfn [; Return a function that computes 'cost(k+1,j) + c[i-1,k]'
          ; OR just 'c[i-1,k]' if we're on the last row.
          (make-min-func [matrix i j]
            (if (< j (- (count matrix) 1))
              (fn [k]
                (+ (cost (+ k 1) j) (get-in matrix [(- i 1) k])))
              (fn [k]
                (get-in matrix [(- i 1) k]))))

          ; Find the minimum cost for the new cost: 'cost(k+1,j)'
          ; added to the previous entry's cost: 'c[i-1,k]'
          (min-cost [matrix i j]
            (let [this-cost (make-min-func matrix i j)
                  rang (range (- i 1) (- j 1))
                  cnt (if (= rang ()) (list (- i 1)) rang)]
              (apply min (map this-cost cnt))))

          ; Takes a matrix and indices, returns an updated matrix.
          (combine [matrix indices]
            (let [i (first indices)
                  j (nth indices 1)
                  opt (min-cost matrix i j)]
              (assoc-in matrix [i j] opt)))]

    (reduce combine m
        (for [i (range 1 (count m)) j (range i (count m))] [i j]))))

谢谢亚历克斯和杰克的评论。他们都非常有帮助,帮助我走向了惯用的 Clojure。

I climbed the wall and was able to think in a sufficiently Clojure-like way to translate the core compute-matrix algorithm into a workable program.

It's just one line longer than my Python implementation, although it appears to be more densely written. For sure, concepts like 'map' and 'reduce' are higher-level functions that require you to put your thinking cap on.

I believe this implementation also fixes a bug in my Python one. :)

;-----------------------------------------------------------------------------
; Compute all table entries so we can compute the optimal cost path and
; reconstruct an optimal solution.
;
(defn compute-matrix [m cost]
  (letfn [; Return a function that computes 'cost(k+1,j) + c[i-1,k]'
          ; OR just 'c[i-1,k]' if we're on the last row.
          (make-min-func [matrix i j]
            (if (< j (- (count matrix) 1))
              (fn [k]
                (+ (cost (+ k 1) j) (get-in matrix [(- i 1) k])))
              (fn [k]
                (get-in matrix [(- i 1) k]))))

          ; Find the minimum cost for the new cost: 'cost(k+1,j)'
          ; added to the previous entry's cost: 'c[i-1,k]'
          (min-cost [matrix i j]
            (let [this-cost (make-min-func matrix i j)
                  rang (range (- i 1) (- j 1))
                  cnt (if (= rang ()) (list (- i 1)) rang)]
              (apply min (map this-cost cnt))))

          ; Takes a matrix and indices, returns an updated matrix.
          (combine [matrix indices]
            (let [i (first indices)
                  j (nth indices 1)
                  opt (min-cost matrix i j)]
              (assoc-in matrix [i j] opt)))]

    (reduce combine m
        (for [i (range 1 (count m)) j (range i (count m))] [i j]))))

Thank you Alex and Jake for your comments. They were both very helpful and have helped me on my way toward idiomatic Clojure.

伪装你 2024-10-08 02:13:13

我在 Clojure 中处理动态程序的一般方法不是直接搞乱值矩阵的构造,而是将记忆与定点组合器结合使用。这是我计算编辑距离的示例:

(defn edit-distance-fp
  "Computes the edit distance between two collections"
  [fp coll1 coll2]
  (cond
      (and (empty? coll1) (empty? coll2)) 0
      (empty? coll2) (count coll1)
      (empty? coll1) (count coll2)
      :else (let [x1 (first coll1)
                  xs (rest coll1)
                  y1 (first coll2)
                  ys (rest coll2)]
                 (min
                  (+ (fp fp xs ys) (if (= x1 y1) 0 1))
                  (inc (fp fp coll1 ys))
                  (inc (fp fp xs coll2))))))

与这里的朴素递归解决方案的唯一区别是简单地将递归调用替换为对 fp 的调用。

然后我用以下命令创建一个记忆固定点:

(defn memoize-recursive [f] (let [g (memoize f)] (partial g g)))

(defn mk-edit-distance [] (memoize-recursive edit-distance-fp))

然后用以下命令调用它:

> (time ((mk-edit-distance) 
  "the quick brown fox jumped over the tawdry moon" 
  "quickly brown foxes moonjumped the tawdriness"))
"Elapsed time: 45.758 msecs"
23

我发现记忆比变异表更容易让我思考。

My general approach to dynamic programs in Clojure is not to mess with construction of the matrix of values directly, but rather to use memorization in tandem with a fixed point combinator. Here's my example for computing edit distance:

(defn edit-distance-fp
  "Computes the edit distance between two collections"
  [fp coll1 coll2]
  (cond
      (and (empty? coll1) (empty? coll2)) 0
      (empty? coll2) (count coll1)
      (empty? coll1) (count coll2)
      :else (let [x1 (first coll1)
                  xs (rest coll1)
                  y1 (first coll2)
                  ys (rest coll2)]
                 (min
                  (+ (fp fp xs ys) (if (= x1 y1) 0 1))
                  (inc (fp fp coll1 ys))
                  (inc (fp fp xs coll2))))))

The only difference from the naive recursive solution here is simply to replace the recursive calls with calls to fp.

And then I create a memoized fixed point with:

(defn memoize-recursive [f] (let [g (memoize f)] (partial g g)))

(defn mk-edit-distance [] (memoize-recursive edit-distance-fp))

And then call it with:

> (time ((mk-edit-distance) 
  "the quick brown fox jumped over the tawdry moon" 
  "quickly brown foxes moonjumped the tawdriness"))
"Elapsed time: 45.758 msecs"
23

I find memoization easier to wrap my brain around than mutating tables.

智商已欠费 2024-10-08 02:13:13

您的矩阵查找和矩阵集函数可以得到简化。您可以使用 assoc-inget-in 来操作嵌套关联结构。

(defn matrix-lookup [matrix row col]
 (get-in matrix [row col]))

(defn matrix-set [matrix row col value]
  (assoc-in matrix [row col] value))

Alex Miller 提到使用原始数组。如果您最终需要朝这个方向发展,您可以首先查看 int-arrayaset-intaget。请参阅 clojure.core 文档以了解更多信息。

Your matrix-lookup and matrix-set functions can be simplified. You can use assoc-in and get-in for manipulating nested associative structures.

(defn matrix-lookup [matrix row col]
 (get-in matrix [row col]))

(defn matrix-set [matrix row col value]
  (assoc-in matrix [row col] value))

Alex Miller mentioned using primitive arrays. If you end up needing to go that direction you can start by looking at int-array, aset-int, and aget. Look at the clojure.core documentation to find out more.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文