使用基站信号强度的三边测量来定位接收器?
我有一个带有多个基站信标的系统,每个基站信标都广播一个无限快的信号,描述它们在二维笛卡尔平面上的位置。信号强度以1.0的[无单位]功率开始,根据以下公式,强度随着距离d而降低:
1
--------
4*pi*d*d
该平面上的某处是接收器。它可以访问基站的位置以及范围内任何基站的接收信号强度。我想使用此信息确定它所在的位置。
I have a system with a number of base station beacons, each broadcasting an infinitely fast signal describing their position on a 2D Cartesian plane. The signal strength begins with a [unitless] power of 1.0, with the strength degrading over the distance d according to the following formula:
1
--------
4*pi*d*d
Somewhere on that plane is a receiver. It can access the location of the base station and the received signal strength from any base stations in range. I'd like to identify where it is located using this information.
I believe I need to perform trilateration (I'd originally assumed triangulation, but that appears to use timing differences?), but neither the Wikipedia entry nor this question have helped.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我认为维基百科页面是不言自明的。
这是一个经典案例。在 2D 情况下三边测量中,您需要至少三个接收器才能估计您的位置。根据给定的信号强度,您可以通过反转公式来估计距离。我建议采用三个最小距离以减少误差。然后您要做的就是应用维基百科页面中的公式,但转换为二维情况。
I thought the wikipedia page was self-explanatory.
This is a classic case. In the 2D case trilateration you need to have at least three receivers in order to estimate your position. From the given signal strength you can estimate the distance by inverting the formula. I would advise to take three smallest distances in order to reduce the error. Then what you do is apply the formulas from the wikipedia page, but converted for a 2d case.