如何计算距离圆周上一点固定弧长的 (x,y)

发布于 2024-10-01 01:40:44 字数 388 浏览 7 评论 0原文

我在这上面花了很多时间,我能感觉到我的理智正在慢慢下降。因此,任何帮助都将非常感激。 我会尝试尽可能简洁。

我在二维平面上有一个圆。我知道它的中心点(C)和半径(R)的笛卡尔坐标。

我的困惑源于这个问题。当在圆外平面上设有一点时;我可以计算圆的圆周上最接近该点的点(P)。

我想要做的是确定圆周上 2 个点的 (x,y) 坐标。我们称它们为 P1 和 P2。 P1和P2是圆弧的两端。弧具有固定长度(X)。 P是P1和P2之间的中点。这样,从P到P1的弧长& P至P2均为X/2。

简而言之: 给定 C、R、P、X ;我需要计算P1和P2。

我正在尝试用 C++ 编写此代码,但任何建议或伪代码都会很棒。

编辑: X 是弧长,不是 P1 和 P2 之间的直线

I've spent so many hours on this I can feel my sanity slowly slipping. So any help would be really truly appreciated.
I'll try and be as succinct as possible.

I have a circle on a 2D plane. I know the cartesian coordinates for it's central point(C) and the radius(R).

My confusion stems from this problem. When provided with a point on the plane outside of the circle; I can calculate the point(P) on the circle's circumference closest to that point.

What I want to do is determine the (x,y) coordinates of 2 points on the circumference. Let's call them P1 and P2. P1 and P2 are two ends of an arc. The arc is of a fixed length(X). P is the midway point between P1 and P2. As such, the arc length from P to P1 & P to P2 are both X/2.

In short:
given C, R, P, X ; I need to calculate P1 and P2.

I am trying to code this in c++ but any suggestions or pseudo-code would be great.

EDIT:
X is an arc length, not a straight line between P1 and P2

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

淡淡の花香 2024-10-08 01:40:44

在圆上,角度 theta 对应于 theta * R 的弧长,这意味着您的弧将面对 theta = X / R 的角度>。 ,如果从你的观点开始

P = C + R * (sin(u), cos(u))

,那么只需按 theta/2 向上/向下:

P1 = C + R * (sin(u + theta/2), cos(u + theta/2))

因此

P2 = C + R * (sin(u - theta/2), cos(u - theta/2))

On a circle, an angle theta corresponds to an arc length of theta * R, meaning your arc will subtend an angle of theta = X / R. So if start with your point

P = C + R * (sin(u), cos(u))

then just go up/down by theta/2:

P1 = C + R * (sin(u + theta/2), cos(u + theta/2))

and

P2 = C + R * (sin(u - theta/2), cos(u - theta/2))
花开半夏魅人心 2024-10-08 01:40:44

所对角度为 θ(以弧度表示)的弧的弧长为 θR。因此,您需要半角 θ = X/(2R)。然后,您需要获取向量 (P -C),将其旋转 ±θ 角度,然后添加回 C 以获得 P1 和 P2。要将矢量旋转一定角度,请将其乘以旋转矩阵

因此,在伪代码中,它看起来像这样:

θ = X/(2R)
A = 2x2 rotation matrix corresponding to a rotation by θ radians
A' = transpose of A
P1 = C + A * (P - C)
P2 = C - A' * (P - C)

An arc that subtends an angle of θ (in radians) has an arc length of θR. So, you want a half-angle of θ = X/(2R). You then need to take the vector (P -C), rotate it by angles of ±θ, and add back in C to get P1 and P2. To rotate a vector by an angle, multiply it by a rotation matrix.

So, in pseudocode, it would look like this:

θ = X/(2R)
A = 2x2 rotation matrix corresponding to a rotation by θ radians
A' = transpose of A
P1 = C + A * (P - C)
P2 = C - A' * (P - C)
青衫儰鉨ミ守葔 2024-10-08 01:40:44

有一些事情可以提供帮助。不会编写代码,但我想解决方案将基于三角形。考虑:

任何半径都具有相同的长度。

因此,从 P1-P1-C 绘制的三角形是等腰三角形。

任何切线都垂直于半径。

我现在很难证明这一点,但如果你将线从 C 延伸到 P1/P2 到与圆相交于 C->P 的切线,也会形成等腰。

从那里应该很容易弄清楚。

There's a few things that could help. Not gonna write the code but I imagine the solution is going to be based on triangles. Consider:

Any radius is the same length.

Thus the triangle drawn from P1-P1-C is isosceles.

Any tangent is perpendicular to the radius.

I'd be hard pressed to prove it out right here and now, but if you extend the lines from C through P1/P2 to the tangent that intersects the circle at C->P also form an isosceles.

Should be easy to figure out from there.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文