给定顶点的起点和形状的中点,查找顶点的端点
假设:
- 该形状是 3D 空间中的正多边形
- 起点(形状的一个任意顶点的终点)已知
- 形状中间的点(不在边缘上 - 与所有角等距)
已知每个角的角度 (((numEdges-2)*PI)/numEdges)、形状的半径(从角到中点的距离 = sqrt(dx^2 + dy^2 + dz^2))以及可以计算每条边的长度(半径*2*sin(pi/numEdges))。
考虑到所有这些信息,如果您愿意,是否可以填充空白,并计算出形状每个顶点的其余起点/终点?
我可以在 2D 中看到逻辑的开始,但在 3D 中我迷失了。
Given that:
- The shape is a regular polygon in 3D space
- The start point (the end of one arbitrary vertex of the shape) is known
- the point in the middle of the shape (not on an edge - equidistant from all corners) is known
the angle at each corner (((numEdges-2)*PI)/numEdges), the radius of the shape (distance from a corner to the midpoint = sqrt(dx^2 + dy^2 + dz^2)), and the length of each edge (radius*2*sin(pi/numEdges)) can be calculated.
Given all this information, is it possible to fill in the blanks, if you like, and work out the rest of the start/endpoints for each vertex of the shape?
I can sort of see the beginnings of the logic in 2D, but in 3D i'm lost.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我认为这是不可能完成的,因为你的已知不能唯一地标识你的多边形。您所知道的点定义了一条唯一的线,但我可以提供无限多个具有相同顶点和中心的全等多边形,并且彼此围绕这条线进行所有旋转。
I'm thinking it can't be done, since your knowns do not uniquely identify your polygon. The points you do know define a unique line, but I can provide infinitely many congruent polygons with the same vertex and center, all rotations of one another about this line.