R 中的向量化 IF 语句?

发布于 2024-09-29 07:58:03 字数 178 浏览 5 评论 0原文

x <- seq(0.1,10,0.1)
y <- if (x < 5) 1 else 2

这会发出警告(或自 R 版本 4.2.0 以来的错误),条件的长度 > 1..

我希望 if 能够对每种情况进行操作,而不是对整个向量进行操作。 我必须改变什么?

x <- seq(0.1,10,0.1)
y <- if (x < 5) 1 else 2

This gives a warning (or error since R version 4.2.0) that the condition has length > 1.

I would want the if to operate on every single case instead of operating on the whole vector.
What do I have to change?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(6

梦途 2024-10-06 07:58:03
x <- seq(0.1,10,0.1)

> x
  [1]  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5
 [16]  1.6  1.7  1.8  1.9  2.0  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3.0
 [31]  3.1  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9  4.0  4.1  4.2  4.3  4.4  4.5
 [46]  4.6  4.7  4.8  4.9  5.0  5.1  5.2  5.3  5.4  5.5  5.6  5.7  5.8  5.9  6.0
 [61]  6.1  6.2  6.3  6.4  6.5  6.6  6.7  6.8  6.9  7.0  7.1  7.2  7.3  7.4  7.5
 [76]  7.6  7.7  7.8  7.9  8.0  8.1  8.2  8.3  8.4  8.5  8.6  8.7  8.8  8.9  9.0
 [91]  9.1  9.2  9.3  9.4  9.5  9.6  9.7  9.8  9.9 10.0

> ifelse(x < 5, 1, 2)
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [38] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x <- seq(0.1,10,0.1)

> x
  [1]  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5
 [16]  1.6  1.7  1.8  1.9  2.0  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3.0
 [31]  3.1  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9  4.0  4.1  4.2  4.3  4.4  4.5
 [46]  4.6  4.7  4.8  4.9  5.0  5.1  5.2  5.3  5.4  5.5  5.6  5.7  5.8  5.9  6.0
 [61]  6.1  6.2  6.3  6.4  6.5  6.6  6.7  6.8  6.9  7.0  7.1  7.2  7.3  7.4  7.5
 [76]  7.6  7.7  7.8  7.9  8.0  8.1  8.2  8.3  8.4  8.5  8.6  8.7  8.8  8.9  9.0
 [91]  9.1  9.2  9.3  9.4  9.5  9.6  9.7  9.8  9.9 10.0

> ifelse(x < 5, 1, 2)
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [38] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
难如初 2024-10-06 07:58:03

为了完整性:在大向量中,您可以使用索引来加快速度(我们经常在模拟中这样做,其中函数通常运行 1000 到 10000 次)。但只要没有必要,就使用ifelse。这样读起来容易多了。

> set.seed(100)
> x <- runif(1000,1,10)

> system.time(replicate(10000,{
+     y <- ifelse(x < 5,1,2)
+ }))
   user  system elapsed 
   2.56    0.08    2.64 

> system.time(replicate(10000,{
+   y <- rep(2,length(x))
+   y[x < 5]<- 1
+ }))
   user  system elapsed 
   0.48    0.00    0.48 

For completeness: In big vectors, you can use the indices to speed things up (we do that often in simulations, where functions typically run 1000 to 10000 times). But as long as it isn't necessary, just use ifelse. This reads a lot easier.

> set.seed(100)
> x <- runif(1000,1,10)

> system.time(replicate(10000,{
+     y <- ifelse(x < 5,1,2)
+ }))
   user  system elapsed 
   2.56    0.08    2.64 

> system.time(replicate(10000,{
+   y <- rep(2,length(x))
+   y[x < 5]<- 1
+ }))
   user  system elapsed 
   0.48    0.00    0.48 
东北女汉子 2024-10-06 07:58:03

y <- if (x < 5) 1 else 2 不对整个向量进行操作(您收到的警告告诉您仅使用条件的第一个元素)。您需要 ifelse

y <- ifelse(x < 5, 1, 2)

ifelse 对整个逻辑向量逐个元素进行操作。 if 仅接受一个 逻辑值。请参阅 ?"if"?ifelse

y <- if (x < 5) 1 else 2 does not operate on the whole vector (the warning you receive tells you only the first element of the condition will be used). You want ifelse:

y <- ifelse(x < 5, 1, 2)

ifelse operates on the whole logical vector, element-by-element. if only accepts one logical value. See ?"if" and ?ifelse

壹場煙雨 2024-10-06 07:58:03

您也可以只创建一个逻辑向量并为其添加 1

x <- seq(0.1, 10, 0.1) # Your data set   
(x >= 5) + 1
#  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
# [92] 2 2 2 2 2 2 2 2 2

如果想比较性能,这将是最快的解决方案

set.seed(100)
x <- runif(1e6, 1, 10)

RL <- function(x) y <- ifelse(x < 5,1,2)
JM <- function(x) {y <- rep(2, length(x)); y[x < 5] <- 1}
DA <- function(x) y <- (x >= 5) + 1

library(microbenchmark)
microbenchmark(RL(x),
               JM(x),
               DA(x))

# Unit: milliseconds
#  expr       min        lq      mean    median        uq       max neval
# RL(x) 331.83448 366.52940 378.89182 374.99741 381.08659 609.21218   100
# JM(x)  38.72894  42.18745  44.36493  43.25086  44.09626  82.76168   100
# DA(x)  10.01644  11.96482  14.21593  13.17825  14.12930  53.76923   100

You could also just create a logical vector and 1 to it

x <- seq(0.1, 10, 0.1) # Your data set   
(x >= 5) + 1
#  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
# [92] 2 2 2 2 2 2 2 2 2

If would like to compare performance, it would be the fastest solution

set.seed(100)
x <- runif(1e6, 1, 10)

RL <- function(x) y <- ifelse(x < 5,1,2)
JM <- function(x) {y <- rep(2, length(x)); y[x < 5] <- 1}
DA <- function(x) y <- (x >= 5) + 1

library(microbenchmark)
microbenchmark(RL(x),
               JM(x),
               DA(x))

# Unit: milliseconds
#  expr       min        lq      mean    median        uq       max neval
# RL(x) 331.83448 366.52940 378.89182 374.99741 381.08659 609.21218   100
# JM(x)  38.72894  42.18745  44.36493  43.25086  44.09626  82.76168   100
# DA(x)  10.01644  11.96482  14.21593  13.17825  14.12930  53.76923   100
远山浅 2024-10-06 07:58:03

按照上面的帖子,您甚至可以使用和修改满足条件的向量元素。在我看来,如果计算速度更快不是成本更高,那么人们就应该这样做。

x = seq(0.1,10,0.1)
y <- rep(2,length(x))
y[x<5] <- x[x<5]*2

上一篇文章的代码最能回答这个问题。但如果我必须使用上面的代码我会这样做:

x = seq(0.1,10,0.1)
y <- rep(2,length(x))
y[x<5] <- x[x<5]*0 +1

Following the above post you can even use and modify the elements of a vector satisfying the criteria. In my opinion if it's not more costly to compute faster one should always do it.

x = seq(0.1,10,0.1)
y <- rep(2,length(x))
y[x<5] <- x[x<5]*2

The code of the previous post is best to answer the question. But if I had to use the code above I would do:

x = seq(0.1,10,0.1)
y <- rep(2,length(x))
y[x<5] <- x[x<5]*0 +1
何时共饮酒 2024-10-06 07:58:03
nzMean <- function(x) { mean(x[x!=-1],na.rm=TRUE)}

nzMin <- function(x) {min(x[x!=-1],na.rm=TRUE)}

nzMax <- function(x) { max(x[x!=-1],na.rm=TRUE)}

nzRange<-function(x) {nzMax(x)-nzMin(x)}

nzSD <- function(x) { SD(x[x!=-1],na.rm=TRUE)}

#following function works
nzN1<- function(x) {ifelse(x!=-1,(x-nzMin(x))/nzRange(x) ,x) }

#following is bad as it returns only 4 not 5 elements of vector
nzN2<- function(x) {ifelse(x!=-1,(x[x!=-1]-nzMin(x))/nzRange(x) ,x) }

#following is bad as it returns 5 elements of vector but not correct answer
nzN3<- function(x) {ifelse(x!=-1,(x[x!=-1]-nzMin(x))/nzRange(x) ,-1) }

y<-c(1,-1,-20,2,4)
a<-nzMean(y)
b<-nzMin(y)
c<-nzMax(y)
d<-nzRange(y)
# test the working function
z<-nzN1(y)

print(z)
nzMean <- function(x) { mean(x[x!=-1],na.rm=TRUE)}

nzMin <- function(x) {min(x[x!=-1],na.rm=TRUE)}

nzMax <- function(x) { max(x[x!=-1],na.rm=TRUE)}

nzRange<-function(x) {nzMax(x)-nzMin(x)}

nzSD <- function(x) { SD(x[x!=-1],na.rm=TRUE)}

#following function works
nzN1<- function(x) {ifelse(x!=-1,(x-nzMin(x))/nzRange(x) ,x) }

#following is bad as it returns only 4 not 5 elements of vector
nzN2<- function(x) {ifelse(x!=-1,(x[x!=-1]-nzMin(x))/nzRange(x) ,x) }

#following is bad as it returns 5 elements of vector but not correct answer
nzN3<- function(x) {ifelse(x!=-1,(x[x!=-1]-nzMin(x))/nzRange(x) ,-1) }

y<-c(1,-1,-20,2,4)
a<-nzMean(y)
b<-nzMin(y)
c<-nzMax(y)
d<-nzRange(y)
# test the working function
z<-nzN1(y)

print(z)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文