规定奇怪的边界条件
有谁知道如何使用 NDSolve 在 Mathematica 中规定像 u[t,0,y]==u[t,1,1-y] 这样的边界条件...它总是抱怨因变量的参数应该字面匹配自变量。
提前致谢。
Does anyone know how to prescribe boundary conditions of like u[t,0,y]==u[t,1,1-y] in Mathematica using NDSolve... It always complains that the arguments of the dependent variable should literally match the independent variable.
Thanks in advance.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这个对称条件可能可以改写为 Derivative[0,1][u][x,1/2]==0 的形式。当然,有关该问题的更多信息会有所帮助。
编辑回应 rcollyer:
(0,1) 中所有 x 的代数恒等式 f(x)=f(1-x) 意味着几何对称性:f 的图形将关于线 x=1/2 对称。现在画出这样一个函数的图形;如果可微,你会发现f'(1/2)=0。
现在,我不确定OP的问题是否可以用这种方式重铸;这取决于问题的具体情况。当处理圆盘上的偏微分方程时,这种情况经常出现,其中函数 u 是极坐标 r 和 theta 的函数。如果圆盘代表一个夹紧的鼓,那么也许你有 u(1,t)=0。但是,u(0,t)呢?如果函数是对称且平滑的,则 u_x(0,t)=0 是一个合理的条件。
This symmetry condition can probably be recast in the form Derivative[0,1][u][x,1/2]==0. Of course, more information on the problem would be helpful.
Edit in response to rcollyer:
The algebraic identity f(x)=f(1-x) for all x in (0,1) implies a geometric symmetry: the graph of f will be symmetric about the line x=1/2. Now draw the graph of such a function; if it is differentiable, you will find that f'(1/2)=0.
Now, I don't know for sure that the OP's problem can be recast this way; it rather depends on the specifics of the problem. This situation frequently arises when dealing with PDEs on the disk where the function u is a function of polar coordinates r and theta. If the disk represents a clamped drum, then perhaps you've got u(1,t)=0. But, what of u(0,t)? If the function is symmetric and smooth, then u_x(0,t)=0 is a reasonable condition.