集合的内涵和外延定义
我正在寻找以下集合的扩展定义:
E := { m | m subset {a,b,c,d} and |m| = 2}
我的想法有
E := {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,a}, {b,b}, {c,c}, {d,d}}
什么想法吗?
I am searching for a extensional definition for the following set:
E := { m | m subset {a,b,c,d} and |m| = 2}
My idea is
E := {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,a}, {b,b}, {c,c}, {d,d}}
any ideas?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
大多数时间集是无序的并且不包含重复元素。所以答案实际上取决于你如何定义集合。如果集合不能包含重复项,则
{a,a}
实际上是{a}
,因此|{a,a}| = 1
因此,我给您的建议是回顾一下为您的特定作业定义集合的方式,以及顺序和/或重复项对于您的特定定义是否重要。大多数时候他们不会,但在你的情况下他们可能会。
Most of the time sets are unordered and do not contain duplicate elements. So the answer really depends on how you define sets. If sets cannot contain duplicates, then
{a,a}
is really{a}
, and so|{a,a}| = 1
So my advice to you is look back on the way sets are defined for your particular assignment and whether order and/or duplicates matter for your particular definition. Most of the time they don't but in your case they might.