Python 中的拉格朗日插值

发布于 2024-09-28 14:27:08 字数 606 浏览 10 评论 0原文

我想用拉格朗日方法插值多项式,但此代码不起作用:

def interpolate(x_values, y_values):
    def _basis(j):
        p = [(x - x_values[m])/(x_values[j] - x_values[m]) for m in xrange(k + 1) if m != j]
        return reduce(operator.mul, p)

    assert len(x_values) != 0 and (len(x_values) == len(y_values)), 'x and y cannot be empty and must have the same length'

    k = len(x_values)
    return sum(_basis(j) for j in xrange(k))

我遵循 Wikipedia< /a>,但是当我运行它时,我在第 3 行收到一个 IndexError!

谢谢

I want to interpolate a polynomial with the Lagrange method, but this code doesn't work:

def interpolate(x_values, y_values):
    def _basis(j):
        p = [(x - x_values[m])/(x_values[j] - x_values[m]) for m in xrange(k + 1) if m != j]
        return reduce(operator.mul, p)

    assert len(x_values) != 0 and (len(x_values) == len(y_values)), 'x and y cannot be empty and must have the same length'

    k = len(x_values)
    return sum(_basis(j) for j in xrange(k))

I followed Wikipedia, but when I run it I receive an IndexError at line 3!

Thanks

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

无戏配角 2024-10-05 14:27:08

尝试

def interpolate(x, x_values, y_values):
    def _basis(j):
        p = [(x - x_values[m])/(x_values[j] - x_values[m]) for m in xrange(k) if m != j]
        return reduce(operator.mul, p)
    assert len(x_values) != 0 and (len(x_values) == len(y_values)), 'x and y cannot be empty and must have the same length'
    k = len(x_values)
    return sum(_basis(j)*y_values[j] for j in xrange(k))

您可以按如下方式确认:

>>> interpolate(1,[1,2,4],[1,0,2])
1.0
>>> interpolate(2,[1,2,4],[1,0,2])
0.0
>>> interpolate(4,[1,2,4],[1,0,2])
2.0
>>> interpolate(3,[1,2,4],[1,0,2])
0.33333333333333331

因此结果是基于经过给定点的多项式的插值。在本例中,这 3 个点定义了一条抛物线,前 3 个测试显示针对给定的 x_值返回了指定的 y_值。

Try

def interpolate(x, x_values, y_values):
    def _basis(j):
        p = [(x - x_values[m])/(x_values[j] - x_values[m]) for m in xrange(k) if m != j]
        return reduce(operator.mul, p)
    assert len(x_values) != 0 and (len(x_values) == len(y_values)), 'x and y cannot be empty and must have the same length'
    k = len(x_values)
    return sum(_basis(j)*y_values[j] for j in xrange(k))

You can confirm it as follows:

>>> interpolate(1,[1,2,4],[1,0,2])
1.0
>>> interpolate(2,[1,2,4],[1,0,2])
0.0
>>> interpolate(4,[1,2,4],[1,0,2])
2.0
>>> interpolate(3,[1,2,4],[1,0,2])
0.33333333333333331

So the result is the interpolated value based on the polynomial that goes through the points given. In this case, the 3 points define a parabola and the first 3 tests show that the stated y_value is returned for the given x_value.

合约呢 2024-10-05 14:27:08

我迟到了近十年,但我发现这是在寻找拉格朗日插值的简单实现。 @smichr 的答案很好,但是 Python 有点过时了,我还想要一些可以与 np.ndarrays 很好地配合的东西,这样我就可以轻松地进行绘图。也许其他人会发现这很有用:

import numpy as np
import matplotlib.pyplot as plt


class LagrangePoly:

    def __init__(self, X, Y):
        self.n = len(X)
        self.X = np.array(X)
        self.Y = np.array(Y)

    def basis(self, x, j):
        b = [(x - self.X[m]) / (self.X[j] - self.X[m])
             for m in range(self.n) if m != j]
        return np.prod(b, axis=0) * self.Y[j]

    def interpolate(self, x):
        b = [self.basis(x, j) for j in range(self.n)]
        return np.sum(b, axis=0)


X  = [-9, -4, -1, 7]
Y  = [5, 2, -2, 9]

plt.scatter(X, Y, c='k')

lp = LagrangePoly(X, Y)

xx = np.arange(-100, 100) / 10

plt.plot(xx, lp.basis(xx, 0))
plt.plot(xx, lp.basis(xx, 1))
plt.plot(xx, lp.basis(xx, 2))
plt.plot(xx, lp.basis(xx, 3))
plt.plot(xx, lp.interpolate(xx), linestyle=':')
plt.show()

I'm almost a decade late to the party, but I found this searching for a simple implementation of Lagrange interpolation. @smichr's answer is great, but the Python is a little outdated, and I also wanted something that would work nicely with np.ndarrays so I could do easy plotting. Maybe others will find this useful:

import numpy as np
import matplotlib.pyplot as plt


class LagrangePoly:

    def __init__(self, X, Y):
        self.n = len(X)
        self.X = np.array(X)
        self.Y = np.array(Y)

    def basis(self, x, j):
        b = [(x - self.X[m]) / (self.X[j] - self.X[m])
             for m in range(self.n) if m != j]
        return np.prod(b, axis=0) * self.Y[j]

    def interpolate(self, x):
        b = [self.basis(x, j) for j in range(self.n)]
        return np.sum(b, axis=0)


X  = [-9, -4, -1, 7]
Y  = [5, 2, -2, 9]

plt.scatter(X, Y, c='k')

lp = LagrangePoly(X, Y)

xx = np.arange(-100, 100) / 10

plt.plot(xx, lp.basis(xx, 0))
plt.plot(xx, lp.basis(xx, 1))
plt.plot(xx, lp.basis(xx, 2))
plt.plot(xx, lp.basis(xx, 3))
plt.plot(xx, lp.interpolate(xx), linestyle=':')
plt.show()
愛上了 2024-10-05 14:27:08

检查索引,维基百科说“k+1 个数据点”,但您将 k = len(x_values) 设置为 k = len(x_values) - 1 > 如果您完全遵循公式。

Check the indices, Wikipedia says "k+1 data points", but you're setting k = len(x_values) where it should be k = len(x_values) - 1 if you followed the formula exactly.

百善笑为先 2024-10-05 14:27:08

此代码与 Python 3 兼容:

def Lagrange (Lx, Ly):
    x=sympy.symbols('x')
    if  len(Lx)!= len(Ly):
        return 1
    y=0
    for k in range ( len(Lx) ):
        t=1
        for j in range ( len(Lx) ):
            if j != k:
                t=t* ( (x-Lx[j]) /(Lx[k]-Lx[j]) )
        y+= t*Ly[k]
    return y

This code is compatible with Python 3:

def Lagrange (Lx, Ly):
    x=sympy.symbols('x')
    if  len(Lx)!= len(Ly):
        return 1
    y=0
    for k in range ( len(Lx) ):
        t=1
        for j in range ( len(Lx) ):
            if j != k:
                t=t* ( (x-Lx[j]) /(Lx[k]-Lx[j]) )
        y+= t*Ly[k]
    return y
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文