确定地图中的比例因子

发布于 2024-09-28 13:23:32 字数 432 浏览 8 评论 0原文

仅给出坐标集,有没有办法找到正在使用的比例因子?然后它将用于计算坐标之间的距离。

让我们考虑一下:

在地图比例上:(这是唯一给定的)

  • pointA(33.511615, -86.778809)
  • pointB(34.398558, -87.669116)

在现实世界比例上:

  • 2 点之间的距离 = 未知

我们可以求解之间的距离2点。 我们可以使用什么转换因子将距离转换为实际或现实世界的比例?我们如何获得转换因子?

给出的坐标基于在较小比例模型中绘制的实际点。您可能看起来很熟悉该格式。难道默认单位是英里? 我不知道他们是如何得出坐标的,有什么想法吗?

我不确定涉及哪些基本概念(地理编码或地理定位?),以及当我试图指出问题时我是否有意义。请帮忙。

Given only the set of coordinates, is there a way to find the scale factor being used? It will then be used to compute the distances between the coordinates.

Let's consider this:

On a map scale: (This is the only given)

  • pointA(33.511615, -86.778809)
  • pointB(34.398558, -87.669116)

On a real world scale:

  • Distance between the 2 points = unknown

We can solve for the distance between the 2 points.
What conversion factor can we use in order to convert the distance into the actual or real world scale? How do we get the conversion factor?

The coordinates given are based on actual points plotted in a smaller scale model.The format may look familiar to you. Could it be that the units by default are miles?
I have no idea on how they came up with the coordinates, any thoughts?

I'm not sure what underlying concepts are involved (Geocoding or Geolocation?) and if I made sense when I try to point things out. Please help.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

笑,眼淚并存 2024-10-05 13:23:32

这些看起来像是纬度和经度坐标(例如,第一个坐标是北纬 33.511615 度,西经 86.778809),将它们置于阿拉巴马州。

您确定这些是某种特定于地图的坐标而不是纬度/经度吗?

编辑:如果它们是纬度/经度,请查看 此网站一个大圆距离计算器以及您自己计算所需的公式。 此网站允许使用十进制度而不是分/秒,因此这可能更有用。

Those look like latitude and longitude coordinates (e.g. 33.511615 degrees North latitude, 86.778809 West longitude for the first one) which place them in Alabama.

Are you sure those are some sort of map-specific coordinates and not Lat/Lon?

Edit: if they are Lat/Lon, check out this site which has a great-circle distance calculator and the formulae you'd need to do it yourself. This site allows decimal degrees rather than minutes/seconds so that may be more useful.

楠木可依 2024-10-05 13:23:32

两点之间的距离:

Point1,坐标为 lat1 和 long1
具有坐标 lat2 和 long2 的 Point2

可以使用 haversine 公式 计算如下(代码显示在Python):

lat1=radians(lat1)
long1=radians(long1)
lat2=radians(lat2)
long2=radians(long2)

gradius=6378.137        # greatest earth radius (equator)
sradius=6356.7523142    # smallest earth radius (pole)

R=(gradius*sradius)/sqrt((gradius*cos(lat1))**2 + (sradius*sin(lat1))**2)

d_lat = lat2 - lat1
d_long = long2 - long1

a = sin(d_lat/2)**2 + cos(lat1) * cos(lat2) * sin(d_long/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = maior * c

# and if you want bearing:
x = sin(d_long) * cos(lat2)
y = cos(lat2) * sin(lat1) - sin(lat2) * cos (lat1) * cos(d_long)
bearing = 90-(degrees(atan2(y, -x)))

当然应该根据您的需要进行调整。希望有帮助。

The distance between two points:

Point1, with coordinates lat1 and long1
Point2, with coordinates lat2 and long2

may be calculated as follows, using the haversine formula (code shown in Python):

lat1=radians(lat1)
long1=radians(long1)
lat2=radians(lat2)
long2=radians(long2)

gradius=6378.137        # greatest earth radius (equator)
sradius=6356.7523142    # smallest earth radius (pole)

R=(gradius*sradius)/sqrt((gradius*cos(lat1))**2 + (sradius*sin(lat1))**2)

d_lat = lat2 - lat1
d_long = long2 - long1

a = sin(d_lat/2)**2 + cos(lat1) * cos(lat2) * sin(d_long/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = maior * c

# and if you want bearing:
x = sin(d_long) * cos(lat2)
y = cos(lat2) * sin(lat1) - sin(lat2) * cos (lat1) * cos(d_long)
bearing = 90-(degrees(atan2(y, -x)))

Of course it should be adjusted and suited to your needs. Hope it helps.

作业与我同在 2024-10-05 13:23:32

我很确定您需要更多信息才能正确缩放距离。您确实需要了解模型比例。

I'm pretty sure you would need more information to scale the distance correctly. You would really need to know the model scale.

高速公鹿 2024-10-05 13:23:32

这是一个复杂的问题,需要更多的信息并考虑您希望通过解决方案实现什么目标。

我假设您上面给出的坐标来自 WGS 84 基准,这是当今现代 GPS 系统最常用的方法。

但是,了解这些坐标将绘制在哪个地图投影上也非常重要。基本上,由于地球是圆的(实际上不是完美的圆,由于地球的自转,它稍微呈椭圆形),当我们将其投影到平坦的表面上时,可以通过多种方式完成。用于“压平”地球的方法以及地图的比例(地图的“放大”程度)会对轴/y 比例对于地图图像测量的有用程度产生很大影响。

您投影到什么地图上?如果我了解更多,我想我可以提供更好的帮助。

This is sort of a complex problem which requires a bit more information and some consideration of what you are hoping to accomplish with the solution.

I am going to assume that the coordinates you gave above are from the WGS 84 datum, which is the most common method used by modern gps systems today.

However, it is very important that you also know which map projection these coordinates will be plotted on. Basically, since the earth is round (and actually not perfectly round, it is slightly ellipsoid due to the rotation of the earth), when we project this onto a flat surface, it can be done in many ways. The method used to 'flatten' the Earth and also the scale of the map (how 'zoomed in' is the map) can have a strong impact on how useful a x/y scale can be for measurements on the map image.

What maps are you projecting onto? If I knew more, I think I could be of better assistance.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文