幂集和并集

发布于 2024-09-28 02:22:53 字数 416 浏览 10 评论 0原文

给出以下集合:

X := {Horse, Dog} 
Y := {Cat}

我定义集合:

M := Pow(X) u {Y}

u 表示并集 幂

集运算的结果集是:

Px := {0, {Horse}, {Dog}, {Horse, Dog}}

0 表示空集

我的问题引用了 unio 操作。 如何将 0 和 Y 结合起来?

M := {{Horse, Cat}, {Dog, Cat}, {Horse, Dog, Cat}}

Following set is given:

X := {Horse, Dog} 
Y := {Cat}

I define the set:

M := Pow(X) u {Y}

u for union

The resulting set of the power set operation is:

Px := {0, {Horse}, {Dog}, {Horse, Dog}}

0 for empty set

My question is referenced to the unio operation. How do I unite 0 and Y?

M := {{Horse, Cat}, {Dog, Cat}, {Horse, Dog, Cat}}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

も星光 2024-10-05 02:22:53

我将与其他答案略有不同。如果定义 Y = {Cat}{Y} = {{Cat}},即 Y 是包含该元素的集合Cat{Y}是包含Y的集合,或者包含包含元素Cat的集合的集合。在这种情况下:

M := {0, {Horse}, {Dog}, {Horse, Dog}, {Cat} }

这是集合论中一个微妙但重要的区别。

I'm going to differ slightly with the other responses. If you define Y = {Cat} then {Y} = {{Cat}}, that is, Y is the set containing the element Cat and {Y} is the set containing Y, or the set containing the set containing the element Cat. In that case:

M := {0, {Horse}, {Dog}, {Horse, Dog}, {Cat} }

It's a subtle, but important distinction in set theory.

眼眸里的快感 2024-10-05 02:22:53

你有

M := Pow(X) u {Y}

这样

Pow(X) := {0, {Horse}, {Dog}, {Horse, Dog}}

M := {0, {Horse}, {Dog}, {Horse, Dog}} u {{Cat}}

事情吗?这对你来说清楚了吗?

您显示的集合映射到笛卡尔积并缺少 {Cat}

you have

M := Pow(X) u {Y}

with

Pow(X) := {0, {Horse}, {Dog}, {Horse, Dog}}

so

M := {0, {Horse}, {Dog}, {Horse, Dog}} u {{Cat}}

Does that clear it up for you?

The set you've displayed the union mapped over the cartesian product and missing {Cat}.

傲性难收 2024-10-05 02:22:53
M := {0, {Horse}, {Dog}, {Horse, Dog}, Cat}

并集的定义是任一集合中的元素集合。因此 {Horse,Cat} 不在联合中,因为它不在任一集合中。

M := {0, {Horse}, {Dog}, {Horse, Dog}, Cat}

The definition of the union is the set of elements that are in either set. So {Horse,Cat} is not in the union, because it is not in either set.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文