幂集和并集
给出以下集合:
X := {Horse, Dog}
Y := {Cat}
我定义集合:
M := Pow(X) u {Y}
u 表示并集 幂
集运算的结果集是:
Px := {0, {Horse}, {Dog}, {Horse, Dog}}
0 表示空集
我的问题引用了 unio 操作。 如何将 0 和 Y 结合起来?
M := {{Horse, Cat}, {Dog, Cat}, {Horse, Dog, Cat}}
Following set is given:
X := {Horse, Dog}
Y := {Cat}
I define the set:
M := Pow(X) u {Y}
u for union
The resulting set of the power set operation is:
Px := {0, {Horse}, {Dog}, {Horse, Dog}}
0 for empty set
My question is referenced to the unio operation. How do I unite 0 and Y?
M := {{Horse, Cat}, {Dog, Cat}, {Horse, Dog, Cat}}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
我将与其他答案略有不同。如果定义
Y = {Cat}
则{Y} = {{Cat}}
,即Y
是包含该元素的集合Cat
和{Y}
是包含Y
的集合,或者包含包含元素Cat
的集合的集合。在这种情况下:这是集合论中一个微妙但重要的区别。
I'm going to differ slightly with the other responses. If you define
Y = {Cat}
then{Y} = {{Cat}}
, that is,Y
is the set containing the elementCat
and{Y}
is the set containingY
, or the set containing the set containing the elementCat
. In that case:It's a subtle, but important distinction in set theory.
你有
这样
的
事情吗?这对你来说清楚了吗?
您显示的集合映射到笛卡尔积并缺少
{Cat}
。you have
with
so
Does that clear it up for you?
The set you've displayed the union mapped over the cartesian product and missing
{Cat}
.并集的定义是任一集合中的元素集合。因此
{Horse,Cat}
不在联合中,因为它不在任一集合中。The definition of the union is the set of elements that are in either set. So
{Horse,Cat}
is not in the union, because it is not in either set.