传输数据时的标准差

发布于 2024-09-27 23:47:37 字数 427 浏览 5 评论 0原文

我正在解决 Gallager 的数据网络中的一些示例,但我不太理解这个特定问题。问题如下:

假设链路上的预期帧长度为 1000 位,标准差为 500 位 求在 9600bps 链路上传输一百万帧所需时间的预期时间和标准差。 随之而来的问题是:帧传输的速率通常定义为预期传输时间的倒数。利用上一题的结果,讨论这个定义是否合理。

我的尝试如下:

发送一帧的时间为:1000/9600 = 0.104秒 因此,发送一百万帧的时间 = 104, 000 秒

我不明白第二部分,其中要求找到标准偏差和后续问题。我也不明白当我们说 500 位的标准偏差是什么意思时,这是否意味着错误损失,这里是 50%?

这不是一个家庭作业问题。几天后我有期中考试,我正在解决这些问题以提高我对这个主题的掌握。

任何帮助/提示将不胜感激,

谢谢, 钱德

I am solving some examples from Data Networks by Gallager and i didnt quite understand this particular question. The question goes as follows:

Suppose the expected frame length on a link is 1000 bits and the standard deviation is 500 bits
Find the expected time and standard deviation of the time required to transfer a million frames on a 9600bps link.
The follow up question is: The rate at which frames can be transmitted is generally defined as the reciprocal of the expected transmission time. Using the result u find in the previous problem, discuss whether this definition is reasonable.

My attempt is as follows:

Time to send one frame is : 1000/9600 = 0.104 seconds
Hence, time to send million frames is = 104, 000 seconds

I did not understand the second part, where it asks to find standard deviation and the follow up question. I also didnt understand what does it mean when we say standard deviation of 500bits, does that mean error loss, which over here is 50%?

This is not a homework problem. I have a midterm in a few days, and im solving these to improve my grip on the subject.

Any help/hints will be appreciated

Thanks,
Chander

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

黯然#的苍凉 2024-10-04 23:47:37

假设分布是正态分布,那么您就有一个正态分布变量的总和。在这种情况下,期望和方差都很容易计算,只需将它们相加即可。

1 frame ~ N(1000,500)
1 mil frams ~ (1E9,5E8)

只需将两者除以 9600 即可获得时间。

E[time] ~= 104167 seconds
std[time] ~= 52083 seconds

一个细节是,他们使用正态分布是愚蠢的,因为帧具有负位的概率非零。因此,您有一些非零的机会在负时间发送所有(负)位......因为他们没有指定分布,所以我不知道他们还有什么意思。

Assuming the distributions are normal then you have a sum of normally distributed variables. In this case both the expectation and the variance are easy to compute, you can just add them.

1 frame ~ N(1000,500)
1 mil frams ~ (1E9,5E8)

to get the times you just divide both by 9600.

E[time] ~= 104167 seconds
std[time] ~= 52083 seconds

One detail is that it is stupid for them to use a normal distribution since there is some non-zero probability a frame has negative bits. And consequently there is some non-zero chance you will send all of your (negative) bits in negative time... Since they don't specify a distribution I don't see what else they could have meant though.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文