基本布尔最小化

发布于 2024-09-27 19:58:45 字数 581 浏览 10 评论 0原文

我正在尝试简化以下布尔代数片段,以便我可以构建电路:

A'.B'.C.D  +  A'.B.C.D'  +  A'.B.C.D  +  A.B'.C'.D +  A.B'.C.D  +  A.B.C'.D  +  A.B.C.D' + A.B.C.D 

到目前为止,我已经得到了:

(C.D) + (B.C) + (A.C'.D)

这是正确的吗?

我想获得尽可能好的最小化。

到目前为止我所经历的步骤是:

A'.B'.C.D  +  A'.B.C.D'  +  A'.B.C.D  +  A+B'+C'+D +  A.B'+C+D  +  A.B.C'.D  +  A.B.C.D' + A.B.C.D 
= A.A'(B'.C.D)  +  A.A'(B.C.D')  +  A.A'(B.C.D)  +  B.B'(A.C'.D)
= (B.C.D) + (B'.C.D) + (B.C.D) + (B.C.D') + (A.C'.D)
= (C.D) + (B.C) + (A.C'.D)

我还能做更多吗?

I am trying to simplify the following piece of boolean algebra so I can construct the circuit :

A'.B'.C.D  +  A'.B.C.D'  +  A'.B.C.D  +  A.B'.C'.D +  A.B'.C.D  +  A.B.C'.D  +  A.B.C.D' + A.B.C.D 

So far I have gotten it to :

(C.D) + (B.C) + (A.C'.D)

Is this correct?

I want to get the best possible minimization.

The steps I have went through so far are :

A'.B'.C.D  +  A'.B.C.D'  +  A'.B.C.D  +  A+B'+C'+D +  A.B'+C+D  +  A.B.C'.D  +  A.B.C.D' + A.B.C.D 
= A.A'(B'.C.D)  +  A.A'(B.C.D')  +  A.A'(B.C.D)  +  B.B'(A.C'.D)
= (B.C.D) + (B'.C.D) + (B.C.D) + (B.C.D') + (A.C'.D)
= (C.D) + (B.C) + (A.C'.D)

Can I do any more?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

在风中等你 2024-10-04 19:58:45

假设你的等式实际上是:

X = (A'.B'.C.D) + (A'.B.C.D') + (A'.B.C.D) + (A+B'+C'+D) + (A.B'+C+D) + (A.B.C'.D) + (A.B.C.D') + (A.B.C.D);

我刚刚通过 逻辑星期五 运行了这个,并将其分解为:

X = 1;

所以你可能想检查一下您的简化工作和/或检查您是否给出了正确的方程。

不过我怀疑上面的原始方程可能有拼写错误,也许应该是:

X = (A'.B'.C.D) + (A'.B.C.D') + (A'.B.C.D) + (A.B'.C'.D) + (A.B'.C.D) + (A.B.C'.D) + (A.B.C.D') + (A.B.C.D);

在这种情况下,逻辑星期五将其简化为:

X = B.C + A.D + C.D;

Assuming your equation is actually:

X = (A'.B'.C.D) + (A'.B.C.D') + (A'.B.C.D) + (A+B'+C'+D) + (A.B'+C+D) + (A.B.C'.D) + (A.B.C.D') + (A.B.C.D);

I just ran this through Logic Friday and it factored it down to:

X = 1;

So you might want to check your simplification work and/or check that you've given the correct equation.

However I suspect there may be typos in the original equation above, and perhaps it should be:

X = (A'.B'.C.D) + (A'.B.C.D') + (A'.B.C.D) + (A.B'.C'.D) + (A.B'.C.D) + (A.B.C'.D) + (A.B.C.D') + (A.B.C.D);

?

In which case Logic Friday simplifies it to:

X = B.C + A.D + C.D;
Spring初心 2024-10-04 19:58:45

我能看到你唯一可以做的就是在左边两项中分配“C”:

(C).(B+D)+(A.C'.D)

或者你可以分配“D”:

(C+A.C').D + (B.C)

对评论的回应:分配律描述如下: http://www.ee.surrey.ac.uk/Projects/Labview/布尔代数/。请参阅标题“T3”下的信息

The only thing I can see that you could possibly do is distribute the "C" in the left two terms:

(C).(B+D)+(A.C'.D)

Or you could distribute the "D":

(C+A.C').D + (B.C)

Response to Comment: The distributive law is described here: http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/. See the information under heading "T3"

悲喜皆因你 2024-10-04 19:58:45

这是另一个解决方案(通过暴力找到):(

a+c).(b+d).(c+d)

Here's another solution (found by brute force):

(a+c).(b+d).(c+d)

℉服软 2024-10-04 19:58:45

为了简化布尔表达式,请使用卡诺图。我认为如果我们减少变量的数量,这是非常有用的。但如果我们有更多变量,那么我们可以遵循方法,因为这种方法不太可取。

for simplifying boolean expressions use karnaugh maps. i think it is very much useful if we less number of variables. but if we have more variables then we can follow methods because this method is not that preferable.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文