测试小数是否足够接近有理数

发布于 2024-09-27 01:20:56 字数 114 浏览 4 评论 0原文

给定一个十进制 x,我想测试 x 是否在分母为 9999 或更小的有理数的 10^-12 范围内。显然,我可以通过查看 x、2x、3x 等来完成此操作,并查看其中是否有任何一个足够接近整数。但有没有更高效的算法呢?

Given a decimal x, I want to test if x is within 10^-12 of a rational number with denominator 9999 or less. Obviously I could do it by looking at x, 2x, 3x, and so on, and seeing if any of these is sufficiently close to an integer. But is there a more efficient algorithm?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

帅冕 2024-10-04 01:20:56

有一种称为连分数算法的算法,它可以为您提供特定情况下的“最佳”有理近似值定义的意义。当你的分母超过9999时,你可以停下来,然后返回到之前的收敛点并进行比较,看看它是否足够接近。当然,如果小数是足够小的有理数,算法将提前终止。

There is an algorithm called the continued fraction algorithm that will give you "best" rational approximations in a certain defined sense. You can stop when your denominator exceeds 9999 and then go back to the previous convergent and compare to see if it is close enough. Of course if the decimal is a small enough rational number the algorithm will terminate early.

北音执念 2024-10-04 01:20:56

所以,有几件事:

我假设“十进制 x”指的是一些浮点表示 x。也就是说,您打算以某种实际上无法完美表示 .1 或 1/3 等的格式来实现此操作。如果您手动执行此操作或使用其他有自己的方式来表示小数的方式,则这将是'申请。

其次,您是否受到这些特定分母和公差的约束?我问这个问题是因为如果您可以接受 2 的幂(例如分母高达 8192,容差为 2^-35),您可以轻松地利用 IEEE-754 样式浮点都是有理数这一事实。使用指数确定尾数中的哪一位对应于 2^-13,然后确保尾数的接下来 22 位为 0(如果精度不够高,无法包含该点之外的 22,则最多为 22)。如果是这样,你就明白了。

现在,如果您不愿意更改算法以使用基数 2,您至少可以使用它来缩小范围并进行一些消除。

So, a couple of things:

I assume that by 'decimal x' you're referring to some floating point representation x. That is, you intend to implement this in some format that can't actually perfectly represent .1 or 1/3, etc. If you're doing this by hand or something else that has its own way to represent decimals, this won't apply.

Second, are you tied to those specific denominators and tolerances? I ask because if you're ok with powers of 2 (e.g. denominator up to 8192 with tolerance of 2^-35), you could easily take advantage of the fact that IEEE-754 style floating points are all rational numbers. Use the exponent to determine which digit in the mantissa corresponds to 2^-13, then ensure that the next 22 digits of the mantissa are 0 (or up to 22 if the precision isn't high enough to include 22 beyond that point). If so, you've got it.

Now, if you're not willing to alter your algorithm to use base 2, you could at least use this to narrow it down and do some elimination.

时光清浅 2024-10-04 01:20:56

我看到你已经接受了答案,但无论如何我还是要插话。

蛮力法不需要检查每个分母。如果你倒退,你不仅可以消除你刚刚检查的数字,还可以消除其中的每个因素。例如,一旦您检查了 9999,则无需检查 3333、1111、909、303、101、99、33、11、9、3 或 1;如果这个数字可以表示为其中一个的分数,那么它也可以表示为 9999 的分数。事实证明,5000 以下的每个数字都至少是 5000 到 9999 中一个数字的因数,所以你已经削减了您的搜索空间减半。

编辑:我发现这个问题很有趣,可以用 Python 编写一个解决方案。

def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)

def simplify(fraction_tuple):
    divisor = gcd(fraction_tuple[0], fraction_tuple[1])
    return fraction_tuple[0] / divisor, fraction_tuple[1] / divisor

def closest_fraction(value, max_denominator=9999, tolerance=1e-12, enforce_tolerance=False):
    best_error, best_result = abs(value), (0,1)
    for denominator in range(max_denominator/2+1, max_denominator+1):
        numerator = round(value * denominator)
        error = abs(value - (numerator / denominator))
        if error < best_error:
            best_error = error
            best_result = int(numerator), denominator
            if error <= tolerance:
                break
    if enforce_tolerance and best_error > tolerance:
        return None
    return simplify(best_result)

I see that you've already accepted an answer, but I'm going to chime in anyway.

The brute force method doesn't need to check every denominator. If you work your way backwards, you can eliminate not only the number you just checked but every factor of it. For example, once you've checked 9999 you don't need to check 3333, 1111, 909, 303, 101, 99, 33, 11, 9, 3, or 1; if the number can be expressed as a fraction of one of those, it can also be expressed as a fraction of 9999. It turns out that every number under 5000 is a factor of at least one number 5000 to 9999, so you've cut your search space in half.

Edit: I found this problem interesting enough to code a solution in Python.

def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)

def simplify(fraction_tuple):
    divisor = gcd(fraction_tuple[0], fraction_tuple[1])
    return fraction_tuple[0] / divisor, fraction_tuple[1] / divisor

def closest_fraction(value, max_denominator=9999, tolerance=1e-12, enforce_tolerance=False):
    best_error, best_result = abs(value), (0,1)
    for denominator in range(max_denominator/2+1, max_denominator+1):
        numerator = round(value * denominator)
        error = abs(value - (numerator / denominator))
        if error < best_error:
            best_error = error
            best_result = int(numerator), denominator
            if error <= tolerance:
                break
    if enforce_tolerance and best_error > tolerance:
        return None
    return simplify(best_result)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文