We don’t allow questions seeking recommendations for software libraries, tutorials, tools, books, or other off-site resources. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
接受
或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
发布评论
评论(3)
本征是最好的!它比 boost::ublas 好得多,你可以写 C = A*B 而不是 ublas 中的 C = prod(A,B) ,我测试过它的速度比 ublas 快得多。
eigen is the best one! It's much better than boost::ublas, you can write C = A*B instead of C = prod(A,B) as in ublas and I have tested the speed it's much faster than ublas.
Eigen3 现在有一个稀疏矩阵类,以及几个流行的稀疏矩阵库的接口。如果您需要计算伪逆来求解最小二乘系统,则可以使用 直接在正规方程上进行 Cholesky 分解。
Eigen3 now has a sparse matrix class, along with interfaces to several popular sparse matrix libraries. If you need to calculate the pseudo inverse to solve a least squares system, you can instead use Cholesky decomposition directly on the normal equations.
NewMat11 是一个很好的、易于使用且易于使用的工具。用于高级矩阵运算(Eigensystems、SVD、QR、LU、逆)的相当轻量级的矩阵库。您可以轻松声明&从数组构建矩阵如下:
访问矩阵元素如下:
转置:
取逆:
仅与 * 相乘:
并且可以相当轻松地执行其他操作,例如:SVD、QR、LU 等。
对于库来说,显式提供伪逆(Moore-Penrose 逆)运算并不是强制性的,因为您可以通过使用转置和逆运算轻松计算它。逆运算如下:
if row > col,则伪逆(最小二乘解)可以计算为:
M_PseudoInv = (MTM)-1MT
如果行 T col 那么伪逆(最小范数解)可以计算为:
M_PseudoInv = MT (MMT)-1
NewMat11 is a good, easy to use & fairly lightweight matrix library for high level matrix operations (Eigensystems, SVD, QR, LU, inverse). You can easily declare & construct a matrix from an array as:
Access matrix elements as:
Take transpose:
Take inverse:
Multiply with just *:
And can perform other operations like: SVD, QR, LU etc. fairly easily.
Providing the pseudo-inverse (Moore-Penrose inverse) operation explicitly is not mandatory for a library, because you can calculate it easily by using the transpose & inverse operations as below:
if row > col, then the pseudo-inverse (least-squares solution) can be calculated as:
M_PseudoInv = (MTM)-1MT
if row < col then the pseudo-inverse (least-norm solution) can be calculated as:
M_PseudoInv = MT (MMT)-1