如何使这个函数递归
void print_combinations(const std::string &str)
{
int i, j, k;
int len = str.length();
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
// show combination
cout << str.at(i) << str.at(j) << str.at(k) << endl;
}
}
}
这个函数做了我想要的,但我想让它递归,这样它就可以创建任意长度的组合。
void print_combinations(const std::string &str)
{
int i, j, k;
int len = str.length();
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
// show combination
cout << str.at(i) << str.at(j) << str.at(k) << endl;
}
}
}
This function does what I want, but I want to make it recursive, so that it can create combinations of arbitrary length.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
您可以使用获取排列的 STL 算法来实现此目的。创建一个整数向量(不是布尔值,它们是邪恶的),并提供一堆(在您的示例中为三个),后跟足够的零以等于字符串的长度。然后使用排列算法遍历该向量的所有排列。使用这些排列中的每一个,打印出与向量中的字符相对应的字符串字符:
There is an STL algorithm to get permutations that you could use for this. Create a vector of ints (not bools, those are evil), and provide a bunch of ones (in your example three of them) followed by enough zeros to equal the length of the string. Then use the permutation algorithm to go through all the permutations of that vector. Using each of these permutations, print out the string characters that correspond to the ones in the vector:
这是一个尝试:
./test fjord 3 的输出:
Here is a try:
Output of ./test fjord 3:
你的问题感觉有点像一个家庭作业问题,这就是为什么我只建议一种方法:
Your question feels a bit like a homework question which is why I'm only suggesting an approach:
这是我的解决方案(我需要一些东西来度过艰难的一天:)
输出:
This is my solution (I needed something to worm up for the hard day:)
output: