hadoop +可写接口+ readFields 在reducer 中抛出异常
我有一个简单的映射缩减程序,其中我的映射和缩减基元如下所示:
map(K,V) = (Text, OutputAggregator)
reduce(Text, OutputAggregator) = (Text,Text)
重要的一点是,从我的映射函数中,我发出了一个 OutputAggregator 类型的对象,它是我自己的实现 Writable 接口的类。但是,我的减少失败,但出现以下异常。更具体地说,readFieds() 函数抛出异常。有什么线索吗?我使用hadoop 0.18.3
10/09/19 04:04:59 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
10/09/19 04:04:59 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.JobClient: Running job: job_local_0001
10/09/19 04:04:59 INFO mapred.MapTask: numReduceTasks: 1
10/09/19 04:04:59 INFO mapred.MapTask: io.sort.mb = 100
10/09/19 04:04:59 INFO mapred.MapTask: data buffer = 79691776/99614720
10/09/19 04:04:59 INFO mapred.MapTask: record buffer = 262144/327680
Length = 10
10
10/09/19 04:04:59 INFO mapred.MapTask: Starting flush of map output
10/09/19 04:04:59 INFO mapred.MapTask: bufstart = 0; bufend = 231; bufvoid = 99614720
10/09/19 04:04:59 INFO mapred.MapTask: kvstart = 0; kvend = 10; length = 327680
gl_books
10/09/19 04:04:59 WARN mapred.LocalJobRunner: job_local_0001
java.lang.NullPointerException
at org.myorg.OutputAggregator.readFields(OutputAggregator.java:46)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:67)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:40)
at org.apache.hadoop.mapred.Task$ValuesIterator.readNextValue(Task.java:751)
at org.apache.hadoop.mapred.Task$ValuesIterator.next(Task.java:691)
at org.apache.hadoop.mapred.Task$CombineValuesIterator.next(Task.java:770)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:117)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:1)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.combineAndSpill(MapTask.java:904)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.sortAndSpill(MapTask.java:785)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:698)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:228)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:157)
java.io.IOException: Job failed!
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1113)
at org.myorg.xxxParallelizer.main(xxxParallelizer.java:145)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.hadoop.util.RunJar.main(RunJar.java:155)
at org.apache.hadoop.mapred.JobShell.run(JobShell.java:54)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)
at org.apache.hadoop.mapred.JobShell.main(JobShell.java:68)
I have a simple map-reduce program in which my map and reduce primitives look like this
map(K,V) = (Text, OutputAggregator)
reduce(Text, OutputAggregator) = (Text,Text)
The important point is that from my map function I emit an object of type OutputAggregator which is my own class that implements the Writable interface. However, my reduce fails with the following exception. More specifically, the readFieds() function is throwing an exception. Any clue why ? I use hadoop 0.18.3
10/09/19 04:04:59 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
10/09/19 04:04:59 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.JobClient: Running job: job_local_0001
10/09/19 04:04:59 INFO mapred.MapTask: numReduceTasks: 1
10/09/19 04:04:59 INFO mapred.MapTask: io.sort.mb = 100
10/09/19 04:04:59 INFO mapred.MapTask: data buffer = 79691776/99614720
10/09/19 04:04:59 INFO mapred.MapTask: record buffer = 262144/327680
Length = 10
10
10/09/19 04:04:59 INFO mapred.MapTask: Starting flush of map output
10/09/19 04:04:59 INFO mapred.MapTask: bufstart = 0; bufend = 231; bufvoid = 99614720
10/09/19 04:04:59 INFO mapred.MapTask: kvstart = 0; kvend = 10; length = 327680
gl_books
10/09/19 04:04:59 WARN mapred.LocalJobRunner: job_local_0001
java.lang.NullPointerException
at org.myorg.OutputAggregator.readFields(OutputAggregator.java:46)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:67)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:40)
at org.apache.hadoop.mapred.Task$ValuesIterator.readNextValue(Task.java:751)
at org.apache.hadoop.mapred.Task$ValuesIterator.next(Task.java:691)
at org.apache.hadoop.mapred.Task$CombineValuesIterator.next(Task.java:770)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:117)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:1)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.combineAndSpill(MapTask.java:904)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.sortAndSpill(MapTask.java:785)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:698)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:228)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:157)
java.io.IOException: Job failed!
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1113)
at org.myorg.xxxParallelizer.main(xxxParallelizer.java:145)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.hadoop.util.RunJar.main(RunJar.java:155)
at org.apache.hadoop.mapred.JobShell.run(JobShell.java:54)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)
at org.apache.hadoop.mapred.JobShell.main(JobShell.java:68)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
发布有关自定义代码的问题时:发布相关代码段。所以第 46 行和前面几行 & 的内容after 确实会有所帮助...:)
但是这可能会有所帮助:
编写自己的可写类时的陷阱是 Hadoop 一遍又一遍地重用该类的实际实例。在调用 readFields 之间,您不会获得闪亮的新实例。
因此,在 readFields 方法开始时,您必须假设您所在的对象充满了“垃圾”,并且必须在继续之前清除。
我给您的建议是实现一个“clear()”方法,该方法完全擦除当前实例并将其重置为创建该实例且构造函数完成后的状态。当然,您将该方法称为键和值的 readFields 中的第一件事。
华泰
When posting a question about custom code: Post the relevant piece of code. So the content of line 46 and a few lines before & after would really help ...:)
However this may help:
THE pitfall when writing your own Writable Class is the fact that Hadoop reuses the actual instance of the class over and over again. Between calls to readFields you do NOT get a shiny new instance.
So at the start of the readFields method you MUST assume the object you are in is filled with "garbage" and must be cleared before continuing.
My suggestion to you is to implement a "clear()" method that fully wipes the current instance and resets it to the state it would be in the moment after it was created and the constructor completed. And of course you call that method as the first thing in your readFields for both the key and the value.
HTH
除了 Niels Basjes 的回答之外:只需在空构造函数中初始化您的成员变量(您必须提供该构造函数,否则 Hadoop 无法初始化您的对象),例如:
假设
this.member
的类型为 <代码>IntWritable。In addition to Niels Basjes answer: Just initialize your member variables within the empty constructor (which you have to supply, otherwise Hadoop can not init your object), e.g.:
assuming that
this.member
is of typeIntWritable
.