数独求解器由于某种原因总是卡住

发布于 2024-09-19 18:59:54 字数 10259 浏览 4 评论 0原文

所以我必须为高中的计算机项目编写一个程序,我想到了做一个数独求解器。 “求解”算法是这样实现的: -

  1. 对于任何只有一个元素“适合”查看行、列、3x3 集合的点,输入该数字。重复执行此操作,直到无法再执行为止。这可以在“singleLeft”函数中看到。
  2. 如果某个数字“适合”某个点,但在关联的行、列或 3x3 集中没有其他地方,则将该数字放入。这可以在“checkOnlyAllowed”函数中看到。
  3. 如果我们还没有完成,请进行“猜测” - 取出一些“适合”该点的数字,将其放在那里,然后使用该算法再次求解(递归) - 如果它有效,我们就完成了。

到目前为止,我有以下代码:

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

//Prints a message and exits the application.
void error(const char msg[])
{
    cout << "An error occurred!" << endl;
    cout << "Description: " << msg << endl;

    exit(0);
}

//A representation of a sudoku board. Can be read from a file or from memory.
class Sudoku
{
    protected:
        //For a point x, y and a number n in the board, mAllowed[x][y][n]
        //is 1 if n is allowed in that point, 0 if not.
        int mAllowed[9][9][10];
        int filledIn;

    public:
        /*
         * For mBoard[i][j], the location is (i,j) in the below map:
         *
         * (0,0) (0,1) (0,2)  (0,3) (0,4) (0,5)  (0,6) (0,7) (0,8) 
         * (1,0) (1,1) (1,2)  (1,3) (1,4) (1,5)  (1,6) (1,7) (1,8) 
         * (2,0) (2,1) (2,2)  (2,3) (2,4) (2,5)  (2,6) (2,7) (2,8) 
         *   
         * (3,0) (3,1) (3,2)  (3,3) (3,4) (3,5)  (3,6) (3,7) (3,8) 
         * (4,0) (4,1) (4,2)  (4,3) (4,4) (4,5)  (4,6) (4,7) (4,8) 
         * (5,0) (5,1) (5,2)  (5,3) (5,4) (5,5)  (5,6) (5,7) (5,8) 
         *    
         * (6,0) (6,1) (6,2)  (6,3) (6,4) (6,5)  (6,6) (6,7) (6,8) 
         * (7,0) (7,1) (7,2)  (7,3) (7,4) (7,5)  (7,6) (7,7) (7,8) 
         * (8,0) (8,1) (8,2)  (8,3) (8,4) (8,5)  (8,6) (8,7) (8,8) 
         *
         */

        int mBoard[9][9];

        //Read in from file with given name.
        Sudoku(char filename[])
        {
            filledIn = 0;

            int i, j, k;

            //Fill the board with 0s.
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    mBoard[i][j] = 0;

            //Set every number to 'allowed' initially.
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    for (k = 1; k <= 9; ++k)
                        mAllowed[i][j][k] = 1;

            //Read in from the file.
            ifstream file(filename);
            if (!file)
                error("File doesn't exist!");
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    if (file)
                    {
                        int m;
                        file >> m;
                        if (m)
                            set(i, j, m);
                    }
                    else
                        error("Not enough entries in file!");
        }

        //Solve the board!
        int solve()
        {
            int prevFilledIn;

            do
            {
                prevFilledIn = filledIn;
                singleLeft();
                checkOnlyAllowed();
            } while (filledIn - prevFilledIn > 3);

            if (filledIn < 81)
                guess();
            return filledIn == 81;
        }

        //Given a point i, j, this looks for places where this point
        //disallows a number and sets the 'mAllowed' table accordingly.
        void fixAllowed(int i, int j)
        {
            int n = mBoard[i][j], k;

            for (k = 0; k < 9; ++k)
                mAllowed[i][k][n] = 0;
            for (k = 0; k < 9; ++k)
                mAllowed[k][j][n] = 0;

            //Look in 3x3 sets too. First, set each coordinate to the
            //highest multiple of 3 below itself. This takes us to the
            //top-left corner of the 3x3 set this point was in. Then,
            //add vectorially all points (x,y) where x and y each are
            //one of 0, 1 or 2 to visit each point in this set.
            int x = (i / 3) * 3;
            int y = (j / 3) * 3;

            for (k = 0; k < 3; ++k)
                for (int l = 0; l < 3; ++l)
                    mAllowed[x + k][y + l][n] = 0;

            mAllowed[i][j][n] = 1;
        }

        //Sets a point i, j to n.
        void set(int i, int j, int n)
        {
            mBoard[i][j] = n;
            fixAllowed(i, j);
            ++filledIn;
        }

        //Try using 'single' on a point, ie, only one number can fit in this
        //point, so put it in and return 1. If more than one number can fit,
        //return 0.
        int trySinglePoint(int i, int j)
        {
            int c = 0, m;
            for (m = 1; m <= 9; ++m)
                c += mAllowed[i][j][m];

            if (c == 1)
            {
                for (m = 1; m <= 9; ++m)
                    if (mAllowed[i][j][m])
                        set(i, j, m);
                //printBoard();
                return 1;
            }
            return 0;
        }

        //Try to solve by checking for spots that have only one number remaining.
        void singleLeft()
        {
            for (;;)
            {
                for (int i = 0; i < 9; ++i)
                    for (int j = 0; j < 9; ++j)
                        if (!mBoard[i][j])
                            if (trySinglePoint(i, j))
                                goto logic_worked;

                //If we reached here, board is either full or unsolvable by this logic, so
                //our job is done.
                return;
logic_worked:
                continue;
            }
        }

        //Within rows, columns or sets, whether this number is 'allowed' in spots
        //other than i, j.
        int onlyInRow(int n, int i, int j)
        {
            for (int k = 0; k < 9; ++k)
                if (k != j && mAllowed[i][k][n])
                    return 0;
            return 1;
        }
        int onlyInColumn(int n, int i, int j)
        {
            for (int k = 0; k < 9; ++k)
                if (k != i && mAllowed[k][j][n])
                    return 0;
            return 1;
        }
        int onlyInSet(int n, int i, int j)
        {
            int x = (i / 3) * 3;
            int y = (j / 3) * 3;

            for (int k = 0; k < 3; ++k)
                for (int l = 0; l < 3; ++l)
                    if (!(x + k == i && y + l == j) && mAllowed[x + k][y + l][n])
                        return 0;
            return 1;
        }
        //If a number is 'allowed' in only one spot within a row, column or set, it's
        //guaranteed to have to be there.
        void checkOnlyAllowed()
        {
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                    if (!mBoard[i][j])
                        for (int m = 1; m <= 9; ++m)
                            if (mAllowed[i][j][m])
                                if (onlyInRow(m, i, j) || onlyInColumn(m, i, j) || onlyInSet(m, i, j))
                                    set(i, j, m);
        }

        //Copy from a given board.
        void copyBoard(int board[9][9])
        {
            filledIn = 0;
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                {
                    if (board[i][j] > 0)
                        ++filledIn;
                    mBoard[i][j] = board[i][j];
                }
        }

        //Try to solve by 'guessing'.
        void guess()
        {
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                    for (int n = 1; n <= 9; ++n)
                        if (!mBoard[i][j])
                            if (mAllowed[i][j][n] == 1)
                            {
                                //Do a direct copy so that it gets the 'mAllowed'
                                //table too.
                                Sudoku s = *this;

                                //Try solving with this number at this spot.
                                s.set(i, j, n);
                                if (s.solve())
                                {
                                    //It was able to do it! Copy and report success!
                                    copyBoard(s.mBoard);
                                    return;
                                }
                            }
        }

        //Print the board (for debug purposes)
        void printBoard()
        {
            for (int i = 0; i < 9; ++i)
            {
                for (int j = 0; j < 9; ++j)
                    cout << mBoard[i][j] << " ";
                cout << endl;
            }
            cout << endl;
            char s[5];
            cin >> s;
        }

};

int main(int argc, char **argv)
{
    //char filename[42];
    //cout << "Enter filename: ";
    //cin >> filename;

    char *filename = argv[1];

    Sudoku s(filename);
    if (!s.solve())
        error("Couldn't solve!");

    cout << "Solved! Here's the solution:" << endl << endl;

    for (int i = 0; i < 9; ++i)
    {
        for (int j = 0; j < 9; ++j)
            cout << s.mBoard[i][j] << " ";
        cout << endl;
    }

    return 0;
}

(包括行号的代码:http://sprunge.us/AiUc ?cpp)

现在我知道这不是很好的风格,但它来自深夜的编码会议,而且我们在学校实验室使用较旧的编译器,所以我不得不这样做有些事情有所不同(在该编译器中,标准标头具有 '.h' 扩展名,for 循环中声明的变量位于 for 范围之外,...)。

文件中的每个点应包含以空格分隔的数字,从左上角开始,从左到右,从上到下,空点用“0”表示。

对于以下文件,它工作得相当好:

5 3 0 0 7 0 0 0 0
6 0 0 1 9 5 0 0 0
0 9 8 0 0 0 0 6 0
8 0 0 0 6 0 0 0 3
4 0 0 8 0 3 0 0 1
7 0 0 0 2 0 0 0 6
0 6 0 0 0 0 2 8 0
0 0 0 4 1 9 0 0 5
0 0 0 0 8 0 0 7 9

但是,这个文件给它带来了麻烦:

0 9 4 0 0 0 1 3 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 7 6 0 0 2 
0 8 0 0 1 0 0 0 0 
0 3 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 6 0 
0 0 0 0 5 0 4 0 0 
0 0 0 0 0 8 0 0 7 
0 0 6 3 0 4 0 0 8 

如果我注释掉打印语句并跟踪进度,我可以看到它开始时在一些点上朝错误的方向前进。最终它会卡在最后,并且回溯永远不会回溯得足够远。我认为“checkOnlyAllowed”部分有问题......

您认为可能是什么问题?

另外 - 我知道我可以在“mAllowed”表中使用位字段,但我们在学校还没有正式了解按位运算。 :P

So I had to write a program for a computer project for high school and I thought of doing a sudoko solver. The 'solve' algorithm is implemented like this:-

  1. For any points where only one element 'fits' looking at rows, columns, 3x3 set, put that number in. Do this repeatedly till it can't be done anymore. This is seen in the 'singleLeft' function.
  2. If a number 'fits' in some point but nowhere else in the associated row, column or 3x3 set, put that number in. This can be seen in the 'checkOnlyAllowed' function.
  3. If we're not done yet, do a 'guess' - take some number that 'fits' in the point, put it in there and then solve again using this algorithm (recurse) - if it works, we're done.

So far, I have this code:

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

//Prints a message and exits the application.
void error(const char msg[])
{
    cout << "An error occurred!" << endl;
    cout << "Description: " << msg << endl;

    exit(0);
}

//A representation of a sudoku board. Can be read from a file or from memory.
class Sudoku
{
    protected:
        //For a point x, y and a number n in the board, mAllowed[x][y][n]
        //is 1 if n is allowed in that point, 0 if not.
        int mAllowed[9][9][10];
        int filledIn;

    public:
        /*
         * For mBoard[i][j], the location is (i,j) in the below map:
         *
         * (0,0) (0,1) (0,2)  (0,3) (0,4) (0,5)  (0,6) (0,7) (0,8) 
         * (1,0) (1,1) (1,2)  (1,3) (1,4) (1,5)  (1,6) (1,7) (1,8) 
         * (2,0) (2,1) (2,2)  (2,3) (2,4) (2,5)  (2,6) (2,7) (2,8) 
         *   
         * (3,0) (3,1) (3,2)  (3,3) (3,4) (3,5)  (3,6) (3,7) (3,8) 
         * (4,0) (4,1) (4,2)  (4,3) (4,4) (4,5)  (4,6) (4,7) (4,8) 
         * (5,0) (5,1) (5,2)  (5,3) (5,4) (5,5)  (5,6) (5,7) (5,8) 
         *    
         * (6,0) (6,1) (6,2)  (6,3) (6,4) (6,5)  (6,6) (6,7) (6,8) 
         * (7,0) (7,1) (7,2)  (7,3) (7,4) (7,5)  (7,6) (7,7) (7,8) 
         * (8,0) (8,1) (8,2)  (8,3) (8,4) (8,5)  (8,6) (8,7) (8,8) 
         *
         */

        int mBoard[9][9];

        //Read in from file with given name.
        Sudoku(char filename[])
        {
            filledIn = 0;

            int i, j, k;

            //Fill the board with 0s.
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    mBoard[i][j] = 0;

            //Set every number to 'allowed' initially.
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    for (k = 1; k <= 9; ++k)
                        mAllowed[i][j][k] = 1;

            //Read in from the file.
            ifstream file(filename);
            if (!file)
                error("File doesn't exist!");
            for (i = 0; i < 9; ++i)
                for (j = 0; j < 9; ++j)
                    if (file)
                    {
                        int m;
                        file >> m;
                        if (m)
                            set(i, j, m);
                    }
                    else
                        error("Not enough entries in file!");
        }

        //Solve the board!
        int solve()
        {
            int prevFilledIn;

            do
            {
                prevFilledIn = filledIn;
                singleLeft();
                checkOnlyAllowed();
            } while (filledIn - prevFilledIn > 3);

            if (filledIn < 81)
                guess();
            return filledIn == 81;
        }

        //Given a point i, j, this looks for places where this point
        //disallows a number and sets the 'mAllowed' table accordingly.
        void fixAllowed(int i, int j)
        {
            int n = mBoard[i][j], k;

            for (k = 0; k < 9; ++k)
                mAllowed[i][k][n] = 0;
            for (k = 0; k < 9; ++k)
                mAllowed[k][j][n] = 0;

            //Look in 3x3 sets too. First, set each coordinate to the
            //highest multiple of 3 below itself. This takes us to the
            //top-left corner of the 3x3 set this point was in. Then,
            //add vectorially all points (x,y) where x and y each are
            //one of 0, 1 or 2 to visit each point in this set.
            int x = (i / 3) * 3;
            int y = (j / 3) * 3;

            for (k = 0; k < 3; ++k)
                for (int l = 0; l < 3; ++l)
                    mAllowed[x + k][y + l][n] = 0;

            mAllowed[i][j][n] = 1;
        }

        //Sets a point i, j to n.
        void set(int i, int j, int n)
        {
            mBoard[i][j] = n;
            fixAllowed(i, j);
            ++filledIn;
        }

        //Try using 'single' on a point, ie, only one number can fit in this
        //point, so put it in and return 1. If more than one number can fit,
        //return 0.
        int trySinglePoint(int i, int j)
        {
            int c = 0, m;
            for (m = 1; m <= 9; ++m)
                c += mAllowed[i][j][m];

            if (c == 1)
            {
                for (m = 1; m <= 9; ++m)
                    if (mAllowed[i][j][m])
                        set(i, j, m);
                //printBoard();
                return 1;
            }
            return 0;
        }

        //Try to solve by checking for spots that have only one number remaining.
        void singleLeft()
        {
            for (;;)
            {
                for (int i = 0; i < 9; ++i)
                    for (int j = 0; j < 9; ++j)
                        if (!mBoard[i][j])
                            if (trySinglePoint(i, j))
                                goto logic_worked;

                //If we reached here, board is either full or unsolvable by this logic, so
                //our job is done.
                return;
logic_worked:
                continue;
            }
        }

        //Within rows, columns or sets, whether this number is 'allowed' in spots
        //other than i, j.
        int onlyInRow(int n, int i, int j)
        {
            for (int k = 0; k < 9; ++k)
                if (k != j && mAllowed[i][k][n])
                    return 0;
            return 1;
        }
        int onlyInColumn(int n, int i, int j)
        {
            for (int k = 0; k < 9; ++k)
                if (k != i && mAllowed[k][j][n])
                    return 0;
            return 1;
        }
        int onlyInSet(int n, int i, int j)
        {
            int x = (i / 3) * 3;
            int y = (j / 3) * 3;

            for (int k = 0; k < 3; ++k)
                for (int l = 0; l < 3; ++l)
                    if (!(x + k == i && y + l == j) && mAllowed[x + k][y + l][n])
                        return 0;
            return 1;
        }
        //If a number is 'allowed' in only one spot within a row, column or set, it's
        //guaranteed to have to be there.
        void checkOnlyAllowed()
        {
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                    if (!mBoard[i][j])
                        for (int m = 1; m <= 9; ++m)
                            if (mAllowed[i][j][m])
                                if (onlyInRow(m, i, j) || onlyInColumn(m, i, j) || onlyInSet(m, i, j))
                                    set(i, j, m);
        }

        //Copy from a given board.
        void copyBoard(int board[9][9])
        {
            filledIn = 0;
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                {
                    if (board[i][j] > 0)
                        ++filledIn;
                    mBoard[i][j] = board[i][j];
                }
        }

        //Try to solve by 'guessing'.
        void guess()
        {
            for (int i = 0; i < 9; ++i)
                for (int j = 0; j < 9; ++j)
                    for (int n = 1; n <= 9; ++n)
                        if (!mBoard[i][j])
                            if (mAllowed[i][j][n] == 1)
                            {
                                //Do a direct copy so that it gets the 'mAllowed'
                                //table too.
                                Sudoku s = *this;

                                //Try solving with this number at this spot.
                                s.set(i, j, n);
                                if (s.solve())
                                {
                                    //It was able to do it! Copy and report success!
                                    copyBoard(s.mBoard);
                                    return;
                                }
                            }
        }

        //Print the board (for debug purposes)
        void printBoard()
        {
            for (int i = 0; i < 9; ++i)
            {
                for (int j = 0; j < 9; ++j)
                    cout << mBoard[i][j] << " ";
                cout << endl;
            }
            cout << endl;
            char s[5];
            cin >> s;
        }

};

int main(int argc, char **argv)
{
    //char filename[42];
    //cout << "Enter filename: ";
    //cin >> filename;

    char *filename = argv[1];

    Sudoku s(filename);
    if (!s.solve())
        error("Couldn't solve!");

    cout << "Solved! Here's the solution:" << endl << endl;

    for (int i = 0; i < 9; ++i)
    {
        for (int j = 0; j < 9; ++j)
            cout << s.mBoard[i][j] << " ";
        cout << endl;
    }

    return 0;
}

(code including line numbers: http://sprunge.us/AiUc?cpp)

Now I understand that it isn't very good style, but it came out of a late-night coding session and also we use an older compiler in the school lab so I had to do some things differently (in that compiler, the standard headers have the '.h' extension, variables declared in for loops are in outside-for scope, ... ).

The file should contain whitespace-delimited digits for each spot in the board starting from the top-left going left to right and top to bottom, with empty spots signified by '0's.

For the following file, it works rather well:

5 3 0 0 7 0 0 0 0
6 0 0 1 9 5 0 0 0
0 9 8 0 0 0 0 6 0
8 0 0 0 6 0 0 0 3
4 0 0 8 0 3 0 0 1
7 0 0 0 2 0 0 0 6
0 6 0 0 0 0 2 8 0
0 0 0 4 1 9 0 0 5
0 0 0 0 8 0 0 7 9

However, this one gives it trouble:

0 9 4 0 0 0 1 3 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 7 6 0 0 2 
0 8 0 0 1 0 0 0 0 
0 3 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 6 0 
0 0 0 0 5 0 4 0 0 
0 0 0 0 0 8 0 0 7 
0 0 6 3 0 4 0 0 8 

If I comment out the print statements and track the progress I can see that it starts by heading out in the wrong direction at points. Eventually it gets stuck toward the end and the backtracking never gets far back enough. I think it's something wrong with the 'checkOnlyAllowed' part...

What do you think could be the problem?

Also - I know I could've used a bitfield for the 'mAllowed' table but we don't officially know about bitwise operations yet in school. :P

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

爱已欠费 2024-09-26 18:59:54

在第 170 行,有一个 goto 跳出 for 循环,然后继续。这可能会给你带来一些奇怪的行为,继续错误的循环,这些行为可能取决于特定的编译器。

尝试将第 164-177 行替换为:

164             for (;;)
165             {
166                 bool successfullyContributedToTheBoard = false;
167                 for (int i = 0; i < 9; ++i)
168                     for (int j = 0; j < 9; ++j)
169                         if (!mBoard[i][j])
170                             if (trySinglePoint(i, j))
171                                 successfullyContributedToTheBoard = true;
172                 if (!successfullyContributedToTheBoard)
173                     return;
174             }

At line 170 you have a goto that is jumping out of a for loop, then continuing. This could give you some weird behavior with continuing the wrong loop, behavior that might depend on the specific compiler.

Try replacing lines 164-177 with:

164             for (;;)
165             {
166                 bool successfullyContributedToTheBoard = false;
167                 for (int i = 0; i < 9; ++i)
168                     for (int j = 0; j < 9; ++j)
169                         if (!mBoard[i][j])
170                             if (trySinglePoint(i, j))
171                                 successfullyContributedToTheBoard = true;
172                 if (!successfullyContributedToTheBoard)
173                     return;
174             }
何时共饮酒 2024-09-26 18:59:54

我没有看你的代码,但你的策略与我用来编写数独解算器的策略完全相同。但我不记得它很慢。我立即得到了解决方案。在我的测试中,程序进行的最大“猜测”次数是 3。那是针对本来应该很难的数独问题。就回溯而言,3 并不是一个大数字,您可以选择一个仅剩下几种可能性(两种或三种)的单元格,这将搜索空间限制为仅约 20-30 个状态(对于困难数独问题)。

我想说的是,使用这种策略可以非常快速地解决数独问题。您只需要弄清楚如何优化您的代码。尽量避免多余的工作。尝试记住一些事情,这样你就不需要一次又一次地重新计算它们。

I didn't look at your code but your strategy is exactly the same as the one I used to code a Sudoku solver. But I can't remember it being very slow. I got solutions in an instant. The maximum number of "guesses" the program had do make was 3 during my tests. That was for Sudoku problems which were supposed to be very hard. Three is not a big number with respect to back tracking and you can pick a cell which has only a few possibilities left (two or three) which limits the search space to about 20-30 states only (for hard Sudoku problems).

What I'm saying is, it's possible to use this strategy and solve Sudoku problems really fast. You only have to figure out how to optimize your code. Try to avoid redundant work. Try to remember things so you don't need to recalculate them again and again.

只等公子 2024-09-26 18:59:54

好吧,我成功了!看来“猜测”中的 i, j 循环是不必要的 - 即,它应该只在一个空位置上进行猜测,因为它的“子进程”将处理其余的事情。解决这个问题实际上使代码变得更简单。现在效果非常好,而且速度非常快!

谢谢大家的帮助。 ;-)

Alright, I got it working! It seems that the i, j loop within 'guess' was unecessary - ie., it should only do a guess on one empty spot because its 'child processes' will handle the rest. Fixing this actually made the code simpler. Now it works really well, and actually its very quick!

Thanks for your help, everyone. ;-)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文