如何验证二维位图是否连续?
假设您在 C# 中具有以下结构:
struct Piece : IEquatable<Piece> {
public readonly int size;
public readonly bool[,] data;
public Piece(Piece p) {
size = p.size;
data = (bool[,])p.data.Clone();
}
public Piece(int s, bool[,] d) {
size = s;
if (d.GetLength(0) != s || d.GetLength(1) != s) throw new ArgumentException();
data = (bool[,])d.Clone();
}
public bool Equals(Piece other) {
if (size != other.size) return false;
return (data.Equals(other.data));
}
}
其思想是它表示一个 size
xsize
位集,该位集表示一个形状(如果愿意,可以是位图) 。
现在,并非所有可能的位组合都是有效的。我有一些要求:
- 总共必须只有
size
位。 (这很简单,我已经实现了) - 所有位必须是连续的。
因此,再次假设 size==4
,以下内容是好的:
..#.
..#.
.##.
....
而以下内容则不然:
...#
...#
#...
#...
如何确定所有位是否连续?
编辑:这是完整的代码,包含埃里克·利珀特的答案。从性能角度来看,这绝对可以加强,但它的可读性很强。
struct Point : IEquatable<Point> {
public int X, Y;
public Point(int x, int y) {
X = x; Y = y;
}
public bool Equals(Point obj) {
return X == obj.X && Y == obj.Y;
}
public override bool Equals(object obj) {
if (obj == null) return false;
if(obj is Point)
return Equals((Point)obj);
return false;
}
public override int GetHashCode() {
return X ^ ~Y;
}
public static bool operator == (Point p1, Point p2) {
return p1.X == p2.X && p1.Y == p2.Y;
}
public static bool operator !=(Point p1, Point p2) {
return p1.X != p2.X || p1.Y != p2.Y;
}
public static readonly Point Empty = new Point(int.MinValue, int.MinValue);
}
struct Piece : IEquatable<Piece> {
public readonly int size;
public readonly bool[,] data;
private bool valid;
public Piece(Piece p) {
size = p.size;
valid = p.valid;
data = (bool[,])p.data.Clone();
}
public Piece(int s, bool[,] d) {
size = s;
if (d.GetLength(0) != s || d.GetLength(1) != s) throw new ArgumentException();
data = (bool[,])d.Clone();
valid = false;
CalcValidity();
}
public bool IsValid {
get {
return valid;
}
}
private enum Square {
White,
Black,
Red,
Blue,
}
private int NumSquares(Square[,] map, Square q) {
int ret = 0;
for (int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
if (map[x, y] == q) ret++;
}
}
return ret;
}
private Point PickSquare(Square[,] map, Square q) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (map[x, y] == q) return new Point(x, y);
}
}
return Point.Empty;
}
private void MakeNeighboursRed(Square[,] map, Point p) {
if (p.X > 0 && map[p.X - 1, p.Y] == Square.Black) map[p.X - 1, p.Y] = Square.Red;
if (p.X < size - 1 && map[p.X + 1, p.Y] == Square.Black) map[p.X + 1, p.Y] = Square.Red;
if (p.Y > 0 && map[p.X, p.Y - 1] == Square.Black) map[p.X, p.Y - 1] = Square.Red;
if (p.Y < size - 1 && map[p.X, p.Y + 1] == Square.Black) map[p.X, p.Y + 1] = Square.Red;
}
private void CalcValidity() {
Square[,] map = new Square[size, size];
int count = 0;
Point square = Point.Empty;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (data[x, y]) {
map[x, y] = Square.Black;
square = new Point(x, y);
} else {
map[x, y] = Square.White;
}
}
}
if (square != Point.Empty) {
map[square.X, square.Y] = Square.Red;
}
while (true) {
if (NumSquares(map, Square.Red) == 0) {
if (NumSquares(map, Square.Black) == 0) {
valid = count == size;
return;
} else {
valid = false;
return;
}
} else {
square = PickSquare(map, Square.Red);
MakeNeighboursRed(map, square);
map[square.X, square.Y] = Square.Blue;
count++;
}
}
}
#region IEquatable<Piece> Members
public bool Equals(Piece other) {
if (size != other.size) return false;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (data[x, y] != other.data[x, y]) return false;
}
}
return true;
}
#endregion
}
Let's say you have the following structure in C#:
struct Piece : IEquatable<Piece> {
public readonly int size;
public readonly bool[,] data;
public Piece(Piece p) {
size = p.size;
data = (bool[,])p.data.Clone();
}
public Piece(int s, bool[,] d) {
size = s;
if (d.GetLength(0) != s || d.GetLength(1) != s) throw new ArgumentException();
data = (bool[,])d.Clone();
}
public bool Equals(Piece other) {
if (size != other.size) return false;
return (data.Equals(other.data));
}
}
The idea is that it represents a size
xsize
set of bits which represents a shape (a bit map, if you will).
Now, not all possible combinations of bits are valid. I have a few requirements:
- There must be only
size
bits total. (This is easy, I have already implemented this) - All bits must be contiguous.
So, again assuming size==4
, the following is good:
..#.
..#.
.##.
....
While the following is not:
...#
...#
#...
#...
How do I determine whether all the bits are contiguous or not?
Edit: Here is the full code, incorporating Eric Lippert's answer. This can definitely be tightened up, performance-wise, but it's very readable.
struct Point : IEquatable<Point> {
public int X, Y;
public Point(int x, int y) {
X = x; Y = y;
}
public bool Equals(Point obj) {
return X == obj.X && Y == obj.Y;
}
public override bool Equals(object obj) {
if (obj == null) return false;
if(obj is Point)
return Equals((Point)obj);
return false;
}
public override int GetHashCode() {
return X ^ ~Y;
}
public static bool operator == (Point p1, Point p2) {
return p1.X == p2.X && p1.Y == p2.Y;
}
public static bool operator !=(Point p1, Point p2) {
return p1.X != p2.X || p1.Y != p2.Y;
}
public static readonly Point Empty = new Point(int.MinValue, int.MinValue);
}
struct Piece : IEquatable<Piece> {
public readonly int size;
public readonly bool[,] data;
private bool valid;
public Piece(Piece p) {
size = p.size;
valid = p.valid;
data = (bool[,])p.data.Clone();
}
public Piece(int s, bool[,] d) {
size = s;
if (d.GetLength(0) != s || d.GetLength(1) != s) throw new ArgumentException();
data = (bool[,])d.Clone();
valid = false;
CalcValidity();
}
public bool IsValid {
get {
return valid;
}
}
private enum Square {
White,
Black,
Red,
Blue,
}
private int NumSquares(Square[,] map, Square q) {
int ret = 0;
for (int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
if (map[x, y] == q) ret++;
}
}
return ret;
}
private Point PickSquare(Square[,] map, Square q) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (map[x, y] == q) return new Point(x, y);
}
}
return Point.Empty;
}
private void MakeNeighboursRed(Square[,] map, Point p) {
if (p.X > 0 && map[p.X - 1, p.Y] == Square.Black) map[p.X - 1, p.Y] = Square.Red;
if (p.X < size - 1 && map[p.X + 1, p.Y] == Square.Black) map[p.X + 1, p.Y] = Square.Red;
if (p.Y > 0 && map[p.X, p.Y - 1] == Square.Black) map[p.X, p.Y - 1] = Square.Red;
if (p.Y < size - 1 && map[p.X, p.Y + 1] == Square.Black) map[p.X, p.Y + 1] = Square.Red;
}
private void CalcValidity() {
Square[,] map = new Square[size, size];
int count = 0;
Point square = Point.Empty;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (data[x, y]) {
map[x, y] = Square.Black;
square = new Point(x, y);
} else {
map[x, y] = Square.White;
}
}
}
if (square != Point.Empty) {
map[square.X, square.Y] = Square.Red;
}
while (true) {
if (NumSquares(map, Square.Red) == 0) {
if (NumSquares(map, Square.Black) == 0) {
valid = count == size;
return;
} else {
valid = false;
return;
}
} else {
square = PickSquare(map, Square.Red);
MakeNeighboursRed(map, square);
map[square.X, square.Y] = Square.Blue;
count++;
}
}
}
#region IEquatable<Piece> Members
public bool Equals(Piece other) {
if (size != other.size) return false;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
if (data[x, y] != other.data[x, y]) return false;
}
}
return true;
}
#endregion
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
这是一种思考不使用递归的洪水填充算法的方法。
首先将每个方块设置为白色(空白)或黑色(填充)。问题是“黑色区域是否连续?”
您可以使用以下算法:
看看它是如何工作的?红色方块是未被洪水淹没的区域的“边缘”。蓝色方块是被淹没的区域。如果蓝色淹没了所有黑色,那么它一定是连续的。
更新:回复,您的评论:
谢谢你的客气话。如果您喜欢的是针对此类问题的非常“LINQ-y”的解决方案,那么我将不会使用我在这里概述的解决方案。请注意,该算法基本上是“改变数据结构以了解有关它的事实”。这不是一件很像 LINQ 的事情。 LINQ 的核心是查询数据结构,而无需修改它们。
如果我想为您的问题制定一个更像 LINQ 的解决方案,那么我会采取一种非常不同的方法。这就是我要做的。
首先,你知道什么是“等价类”或“等价关系”吗?如果您不知道,我将简要定义它们。 关系是一个接受两个东西并返回一个布尔值的函数。例如,“小于”、“等于”、“十进制最后一位数字相同”和“和为偶数”都是整数上的关系。 等价关系 (A~B) 是一种自反关系(X~X 始终为真)、对称(X~Y 和Y~X 相同)和传递(如果 X~Y 和 Y~Z 都为真,则 X~Z 也为真)。
在我们的示例中,“小于”是传递性的,但不是自反性或对称性的。其他三个是等价关系。
等价关系将集合划分为等价类。例如,等价关系“求和为偶数”将整数划分为两个等价类:偶数和奇数。任意选择两个奇数,X~Y 为真。任意选择两个偶数,X~Y 为真。但奇数和偶数,X~Y为假。就该关系而言,所有偶数都是“相等的”。
现在考虑您的图块集之一的关系“是该图块集上的邻居”。显然这不是等价关系;它是对称的,但不是自反或传递的。但是,任何关系都可以通过定义一个新关系来扩展为等价关系,该新关系是该关系的自反和传递闭包。这就是“可达”关系。
因此,您的问题本质上是“可达性的等价关系有多少个等价类”?如果答案为零,则不存在黑色区域。如果答案是 1,则存在一个连续区域。如果超过一个,则必定存在不连续的区域。
因此,描述你的问题的另一种方法是“假设至少有一个黑色瓷砖,整组黑色瓷砖是否与任意瓷砖上邻居关系的自反和传递闭包相同?”如果答案是“是”,则存在一个连续区域。如果“否”,则一定存在不可到达的区域。
由于您有办法计算图块,并且数字是有限整数,因此我们可以做得更好。我们可以问“任意黑色瓷砖上邻居关系的自反和传递闭包的大小是否与所有黑色瓷砖的数量相同?”来解决你的问题。
那么如何回答这个问题呢?假设你有一个方法,它接受一个图块并返回其邻居的序列:
基本上这个方法是“给定一个图块,给我所有与其有邻居关系的图块”。如果您可以计算哪些成员与给定成员有关系,那么这非常有用,在这种情况下,您显然可以轻松地做到这一点。
现在,您可以使用我在此处发布的代码来计算该关系的传递和自反闭包:
http://blogs.msdn.com/b/ericlippert/archive/2010/02/08/making-the-code-read-like -the-spec.aspx
现在你的整个算法确实变得非常短:
如果你有合适的工具可供使用,那么解决方案就是一个语句!
请注意,我给出的两个解决方案(以及阿尔宾的草图)的操作相同。在我的第二个解决方案中,第一个解决方案的“红色图块”是“堆栈”数据结构中的图块,“蓝色图块”是我给出的链接中代码的“闭包”数据结构中的图块。
解决方案之间的区别仅在于您如何思考该解决方案。我喜欢用数学的方式思考,所以我更喜欢第二种解决方案。这都是关于集合、关系和闭包,非常抽象的想法。如果您更像是一个视觉思考者,那么我的第一个解决方案(您可以想象红边波扩散到黑色区域直到充满)可能更容易理解和推理。
Here's a way to think about the flood fill algorithm that does not use recursion.
Start with every square set to either white (blank) or black (filled). The question is "are the black regions contiguous or not?"
You can use this algorithm:
See how that works? The red squares are the "edges" of the region that is not flood-filled. The blue squares are the flooded region. If the blue floods all the black then it must have been contiguous.
UPDATE: Re, your comment:
Thanks for the kind words. If what you like is very "LINQ-y" solutions to these sorts of problems then I would not use the solution that I sketched out here. Notice that the algorithm is basically "mutate a data structure to learn facts about it". That's not a very LINQ-ish thing to do. LINQ is all about querying data structures without modifying them.
If I wanted to make a more LINQ-like solution to your problem then I would take a very different approach. Here's what I'd do.
First off, do you know what an "equivalence class" or an "equivalence relation" is? I'll briefly define them if you don't know. A relation is a function that takes two things and returns a bool. For example, "less than", "equal to", "have the same last digit in base ten" and "sum to an even number" are all relations on integers. An equivalence relation (A~B) is a relation which is reflexive (X~X is always true), symmetric (X~Y and Y~X are the same) and transitive (if X~Y and Y~Z are both true then so is X~Z).
In our examples, "less than" is transitive but not reflexive or symmetric. The other three are equivalence relations.
An equivalence relation partitions the set into equivalence classes. For example, the equivalence relation "sum to an even number" partitions the integers into two equivalence classes: the even numbers and the odd numbers. Pick any two odd numbers and X~Y is true. Pick any two even numbers and X~Y is true. But an odd number and an even number, X~Y is false. All the even numbers are "equivalent" for the purposes of this relation.
Now consider the relation "is a neighbour on this tile set" for one of your tile sets. Clearly that is not an equivalence relation; it is symmetric but not reflexive or transitive. But any relation can be extended to be an equivalence relation by defining a new relation that is the reflexive and transitive closure of the relation. This is the "is reachable from" relation.
Your question is therefore essentially "how many equivalence classes are there for the equivalence relation of reachability"? If the answer is zero then there are no black regions. If the answer is one then there is a single contiguous region. If it is more than one then there must be discontiguous regions.
Therefore another way to characterize your question is "given that there is at least one black tile, is the entire set of black tiles identical with the reflexive and transitive closure of the neighbour relation on an arbitrary tile?" If the answer is "yes" then there is a single contiguous region. If "no" then there must be a region that is not reachable.
Since you have a way to count tiles, and since the numbers are finite integers, we can do even better than that. We can just ask "is the size of the reflexive and transitive closure of the neighbour relation on an arbitrary black tile identical with the count of all black tiles?" to solve your problem.
So how to answer that question? Suppose you have a method that takes a tile and returns a sequence of its neighbours:
Basically this method is "given a tile, give me all the tiles that have the neighbour relation with it". This works great if you can compute which members have a relation with a given member, which clearly in this case you can do so cheaply.
Now you can compute the transitive and reflexive closure of that relation using the code I posted here:
http://blogs.msdn.com/b/ericlippert/archive/2010/02/08/making-the-code-read-like-the-spec.aspx
And now your entire algorithm becomes very short indeed:
If you have the right tools at your disposal then the solution is a single statement!
Notice that the two solutions I've given (and Albin's sketch as well) are identical in their operation. In my second solution the "red tiles" of the first solution are the tiles in the "stack" data structure, and the "blue tiles" are the tiles in the "closure" data structure of the code in the link I gave.
The difference between the solutions is only in how you think about the solution. I like to think mathematically, so I would prefer the second solution. It's all about sets and relations and closures, very abstract ideas. If you're more of a visual thinker then my first solution, where you can visualize a red-edged wave spreading into a black area until it is full, might be easier to understand and reason about.
您从随机的“真实”位开始。然后你一次向北、向南、向东、向西“行走”。如果您发现未“访问”的“真实”位,请在单独的结构中将该节点标记为“已访问”,并从那里沿所有方向递归“行走”。如果该位为“假”或“已访问”,则不执行任何操作并返回到先前的“级别”。当找不到更多非“已访问”节点时,计算已访问节点的数量并与“真实”节点的总数进行比较。
编辑:请注意,如果位图很大,递归将耗尽堆栈空间。
You start at a random "true" bit. Then you "walk" north, south, east and west one at a time. If you find a "true" bit that is not "visited", mark that node as "visited" in a separate structure and "walk" recursively in all directions from there. If the bit is "false" or "visited", do nothing and return to the previous "level". When you can not find any more non "visited" nodes, count the number of visited nodes and compare with the total number of "true" nodes.
Edit: Note that recursion will run out of stack space if the bitmaps are large.