如何提高特征脸算法的准确率

发布于 2024-09-18 11:41:56 字数 227 浏览 8 评论 0原文

我在C#上使用EmguCV库(openCV包装器)使用Eigenface算法实现人脸检测和面部识别

我发现了很多准确率错误,例如最小距离不是训练集中的同一个人,训练集中不存在的人但与训练集中的人进行良好距离的匹配等,

请帮助我。

谢谢。

附加信息: - 我在训练集中每 1 人使用 1 张面部图像(直接面部图像,无方向) - 现在,我在训练集中对大约 10-20 个人进行测试

I use EmguCV library(openCV wrapper) on C# to implemented face detection and facial recognition using Eigenface algorithm

I found many mistakes of accuracy rate such as minimum distance is not a same person in Training Set, person who doesn't exist in Training Set but match with person in Training set with good distance, etc.

please help me.

Thank you.

additional information:
- I use 1 facial image per 1 person in Training set (straight facial image, no orientation)
- Now, I test with around 10-20 people in Training set

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

羞稚 2024-09-25 11:41:56

尝试模糊图像。由于每个人仅使用一张训练图像,因此 Eigenface 无法判断高频分量还是低频分量是否更有用。

要决定图像模糊/缩小的程度,请对人类进行实验。给一个人一些模糊的测试图像对并要求它们进行匹配。尝试找出可以将图像模糊到何种程度,同时仍能成功匹配它们。对计算机使用相同的模糊参数。

图像对齐技术也可能有所帮助。例如,标准化图像,使鼻尖和两只眼睛(形成三角形)仿射变换到一组标准位置。

最后,一些简单的特征值预处理技术或图像预处理技术(例如直方图均衡化)可能会有所帮助。

Try blurring the images. Since you are only using one training image per person, Eigenface does not have a way to tell whether the high-frequency component or low-frequency component would be more useful.

To decide on how much to blur / downscale the images, do an experiment with a human. Give a person some blurred test image pairs and ask them to match. Try to find out how much you can blur the images and still be successful at matching them. Use the same blurring parameters for the computer.

Image alignment techniques may also help. For example, normalize the images so that the tip of nose, and the two eyes (forming a triangle) are affine-transformed to a standard set of locations.

Finally, some simple eigenvalue preprocessing techniques or image preprocessing techniques (such as histogram equalization) may help.

一个人练习一个人 2024-09-25 11:41:56
  • 以下选项可以帮助您提高准确性

1] 图像标准化:

  • 使图像像素值从 0 到 1

2] 图像对齐(这是实现良好效果的非常重要的一步)性能):

< strong>3] 数据增强技巧:

  • 您可以向脸部添加滤镜,这些滤镜将在不同的照明条件下产生同一张脸的效果,
  • 因此您可以从一张脸部在不同的照明条件下制作多张图像

4]消除噪声:

  • 在执行步骤 3 之前,对所有图像应用高斯模糊
  • Below are the following options which may help you boost your accuracy

1] Image Normalization:

  • Make your image pixel values from 0 to 1

2] Image Alignment (This is a very important step to achieve good performance):

3] Data augmentation trick:

  • You can add filters to you faces that will have an effect of the same face in different lighting conditions
  • So from one face you can make several images in different lighting conditions

4] Removing Noise:

  • Before performing step 3 apply Gaussian blur to all the images
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文