我是否正确实现了这个极小极大函数?
这是跳棋游戏。请参阅旧版本代码的修订历史记录。
private static Move GetBestMove(Color color, Board board, int depth)
{
var bestMoves = new List<Move>();
var validMoves = board.GetValidMoves(color);
int highestScore = int.MinValue;
Board boardAfterMove;
int tmpScore;
var rand = new Random();
Debug.WriteLine("{0}'s Moves:", color);
foreach (var move in validMoves)
{
boardAfterMove = board.Clone().ApplyMove(move);
if(move.IsJump && !move.IsCrowned && boardAfterMove.GetJumps(color).Any())
tmpScore = NegaMax(color, boardAfterMove, depth);
else
tmpScore = -NegaMax(Board.Opposite(color), boardAfterMove, depth);
Debug.WriteLine("{0}: {1}", move, tmpScore);
if (tmpScore > highestScore)
{
bestMoves.Clear();
bestMoves.Add(move);
highestScore = tmpScore;
}
else if (tmpScore == highestScore)
{
bestMoves.Add(move);
}
}
return bestMoves[rand.Next(bestMoves.Count)];
}
private static int NegaMax(Color color, Board board, int depth)
{
var validMoves = board.GetValidMoves(color);
int highestScore = int.MinValue;
Board boardAfterMove;
if (depth <= 0 || !validMoves.Any())
return BoardScore(color, board);
foreach (var move in validMoves)
{
boardAfterMove = board.Clone().ApplyMove(move);
if(move.IsJump && !move.IsCrowned && boardAfterMove.GetJumps(color).Any())
highestScore = Math.Max(highestScore, NegaMax(color, boardAfterMove, depth));
else
highestScore = Math.Max(highestScore, -NegaMax(Board.Opposite(color), boardAfterMove, depth - 1));
}
return highestScore;
}
private static int BoardScore(Color color, Board board)
{
if (!board.GetValidMoves(color).Any()) return -1000;
return board.OfType<Checker>().Sum(c => (c.Color == color ? 1 : -1) * (c.Class == Class.Man ? 2 : 3));
}
我用深度 0 进行尝试,大约一半的游戏得分是正确的,然后突然开始搞砸了。其中一名玩家会开始宣称他的分数比实际分数高。为什么只能玩半场?!
It's for a game of checkers. See revision history for older versions of code.
private static Move GetBestMove(Color color, Board board, int depth)
{
var bestMoves = new List<Move>();
var validMoves = board.GetValidMoves(color);
int highestScore = int.MinValue;
Board boardAfterMove;
int tmpScore;
var rand = new Random();
Debug.WriteLine("{0}'s Moves:", color);
foreach (var move in validMoves)
{
boardAfterMove = board.Clone().ApplyMove(move);
if(move.IsJump && !move.IsCrowned && boardAfterMove.GetJumps(color).Any())
tmpScore = NegaMax(color, boardAfterMove, depth);
else
tmpScore = -NegaMax(Board.Opposite(color), boardAfterMove, depth);
Debug.WriteLine("{0}: {1}", move, tmpScore);
if (tmpScore > highestScore)
{
bestMoves.Clear();
bestMoves.Add(move);
highestScore = tmpScore;
}
else if (tmpScore == highestScore)
{
bestMoves.Add(move);
}
}
return bestMoves[rand.Next(bestMoves.Count)];
}
private static int NegaMax(Color color, Board board, int depth)
{
var validMoves = board.GetValidMoves(color);
int highestScore = int.MinValue;
Board boardAfterMove;
if (depth <= 0 || !validMoves.Any())
return BoardScore(color, board);
foreach (var move in validMoves)
{
boardAfterMove = board.Clone().ApplyMove(move);
if(move.IsJump && !move.IsCrowned && boardAfterMove.GetJumps(color).Any())
highestScore = Math.Max(highestScore, NegaMax(color, boardAfterMove, depth));
else
highestScore = Math.Max(highestScore, -NegaMax(Board.Opposite(color), boardAfterMove, depth - 1));
}
return highestScore;
}
private static int BoardScore(Color color, Board board)
{
if (!board.GetValidMoves(color).Any()) return -1000;
return board.OfType<Checker>().Sum(c => (c.Color == color ? 1 : -1) * (c.Class == Class.Man ? 2 : 3));
}
I'm trying it with depth 0, and the scores are correct for about half the game, and then all of a sudden it starts screwing up. One of the players will start proclaiming his score is higher than it really is. Why would it only work for half a game?!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
有趣的方法,我第一次看到 MaxiMax。但我在这里看到一个问题:
在这段代码中,
move
和minMove
是针对不同侧的移动,但您在这里将它们平等地应用于同一级别。第二行应该类似于:您当然可以存储并重复使用board.Clone().ApplyMove(move)部分。
但你仍然会丢失信息:在深度 100 处,你过滤掉深度 99 处的最佳 boardScore,但你没有/使用 98..0 级中的任何内容,除非没有移动(空),但正如你注意到的那样部分出了问题。
不过,这就是要走的路。树搜索的主要结果是最佳分支的值。此举本身仅在根级别上是必要的。保留它直到您开始实现 alpha/beta,然后您将能够将最佳分支存储在单个表中。
我建议改用普通的 NegaMax,
另请参阅这个问题。
Interesting approach, the first time I see MaxiMax. But I see a problem here:
In this code,
move
andminMove
are moves for different sides and yet you apply them equally at the same level here. The second line should be something like:You can of course store and re-use the
board.Clone().ApplyMove(move)
part.But then you still loose information: At Depth 100 you filter out the best boardScore at depth 99 but you don't have/use anything from levels 98..0 except when there was no move (null), but as you noticed yourself that part goes wrong.
Still, that is the way to go. The main result from a tree-search is the value of the best branch. The move itself is only essential at the root level. Leave it until you start implementing alpha/beta, then you will be able to store the best branch in a single table.
I would advice switching to a regular NegaMax,
also see this SO question.
发现错误:什么可能导致此启动一段时间后计算错误?
新代码:
我并不 100% 相信这能完美地工作。它似乎适用于深度 0,通常适用于深度 1……除此之外,我不知道计算机在想什么。看起来仍然没有表现得非常聪明。
编辑:运行这个和最大速度...NegaMax代理与随机。 NegaMax 总是获胜。查看出现“1000”的分数。此后他总是在几回合内获胜,所以它最终似乎确实起作用了!
Found the bug: What could cause this to start miscalculating after awhile?
New code:
I'm not 100% convinced this works perfectly. It seems to work for depth 0, and usually for depth 1... beyond that, I have no idea what the computer is thinking. Still doesn't appear to play super intelligently.
Edit: Running this and max speed... NegaMax agent vs Random. NegaMax always wins. Watching the scores for occurrences of "1000". He always wins within a few turns after that, so it does appear to be working, finally!