App Engine 批量加载器性能
我正在使用 App Engine 批量加载器(Python 运行时)将实体批量上传到数据存储。我上传的数据以专有格式存储,因此我通过自己的连接器实现(在bulkload_config.py
中注册)将其转换为中间Python字典。
import google.appengine.ext.bulkload import connector_interface
class MyCustomConnector(connector_interface.ConnectorInterface):
....
#Overridden method
def generate_import_record(self, filename, bulkload_state=None):
....
yeild my_custom_dict
为了将这个中性 python 字典转换为数据存储实体,我使用了在 YAML 中定义的自定义后导入函数。
def feature_post_import(input_dict, entity_instance, bulkload_state):
....
return [all_entities_to_put]
注意:我没有在 feature_post_import
函数中使用 entity_instance,bulkload_state
。我只是创建新的数据存储实体(基于我的 input_dict
),然后返回它们。
现在,一切都很好。然而,批量加载数据的过程似乎花费了太多时间。例如,一 GB(约 1,000,000 个实体)的数据需要约 20 小时。如何提高批量加载过程的性能。我错过了什么吗?
我在 appcfg.py 中使用的一些参数是(10 个线程,每个线程的批处理大小为 10 个实体)。
链接了 Google App Engine Python 小组帖子:http://groups .google.com/group/google-appengine-python/browse_thread/thread/4c8def071a86c840
更新: 为了测试批量加载过程的性能,我加载了“测试”种类
的实体
。尽管此实体
有一个非常简单的FloatProperty
,但我仍然花费了相同的时间来批量加载这些实体
。
我仍然会尝试改变批量加载器参数,rps_limit
、bandwidth_limit
和 http_limit
,看看是否可以获得更多吞吐量。
I am using the App Engine Bulk loader (Python Runtime) to bulk upload entities to the data store. The data that i am uploading is stored in a proprietary format, so i have implemented by own connector (registerd it in bulkload_config.py
) to convert it to the intermediate python dictionary.
import google.appengine.ext.bulkload import connector_interface
class MyCustomConnector(connector_interface.ConnectorInterface):
....
#Overridden method
def generate_import_record(self, filename, bulkload_state=None):
....
yeild my_custom_dict
To convert this neutral python dictionary to a datastore Entity, i use a custom post import function that i have defined in my YAML.
def feature_post_import(input_dict, entity_instance, bulkload_state):
....
return [all_entities_to_put]
Note: I am not using entity_instance, bulkload_state
in my feature_post_import
function. I am just creating new data store entities (based on my input_dict
), and returning them.
Now, everything works great. However, the process of bulk loading data seems to take way too much time. For e.g. a GB (~ 1,000,000 entities) of data takes ~ 20 hours. How can I improve the performance of the bulk load process. Am i missing something?
Some of the parameters that i use with appcfg.py are (10 threads with a batch size of 10 entities per thread).
Linked a Google App Engine Python group post: http://groups.google.com/group/google-appengine-python/browse_thread/thread/4c8def071a86c840
Update:
To test the performance of the Bulk Load process, I loaded entities
of a 'Test' Kind
. Even though this entity
has a very simple FloatProperty
, it still took me the same amount of time to bulk load those entities
.
I am still going to try to vary the bulk loader parameters, rps_limit
, bandwidth_limit
and http_limit
, to see if i can get any more throughput.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
有一个名为 rps_limit 的参数决定每秒上传的实体数量。这是主要的瓶颈。默认值为
20
。同时将
bandwidth_limit
增加到合理的值。我将
rps_limit
增加到500
,一切都得到了改善。我实现了每 1000 个实体 5.5 - 6 秒,这比每 1000 个实体 50 秒有了重大改进。There is parameter called
rps_limit
that determines the number of entities to upload per second. This was the major bottleneck. The default value for this is20
.Also increase the
bandwidth_limit
to something reasonable.I increased
rps_limit
to500
and everything improved. I achieved 5.5 - 6 seconds per 1000 entities which is a major improvement from 50 seconds per 1000 entities.