Haskell 中的相互递归求值器
更新:我添加了答案 描述了我的最终解决方案(提示:单个 Expr
数据类型是不够的)。
我正在编写一个小型表达式语言的评估器,但我陷入了LetRec 构造。
这是语言:
type Var = String
type Binds = [(Var, Expr)]
data Expr
= Var Var
| Lam Var Expr
| App Expr Expr
| Con Int
| Sub Expr Expr
| If Expr Expr Expr
| Let Var Expr Expr
| LetRec Binds Expr
deriving (Show, Eq)
这是迄今为止的评估器:
data Value
= ValInt Int
| ValFun Env Var Expr
deriving (Show, Eq)
type Env = [(Var, Value)]
eval :: Env -> Expr -> Either String Value
eval env (Var x) = maybe (throwError $ x ++ " not found")
return
(lookup x env)
eval env (Lam x e) = return $ ValFun env x e
eval env (App e1 e2) = do
v1 <- eval env e1
v2 <- eval env e2
case v1 of
ValFun env1 x e -> eval ((x, v2):env1) e
_ -> throwError "First arg to App not a function"
eval _ (Con x) = return $ ValInt x
eval env (Sub e1 e2) = do
v1 <- eval env e1
v2 <- eval env e2
case (v1, v2) of
(ValInt x, ValInt y) -> return $ ValInt (x - y)
_ -> throwError "Both args to Sub must be ints"
eval env (If p t f) = do
v1 <- eval env p
case v1 of
ValInt x -> if x /= 0
then eval env t
else eval env f
_ -> throwError "First arg of If must be an int"
eval env (Let x e1 e2) = do
v1 <- eval env e1
eval ((x, v1):env) e2
eval env (LetRec bs e) = do
env' <- evalBinds
eval env' e
where
evalBinds = mfix $ \env' -> do
env'' <- mapM (\(x, e') -> eval env' e' >>= \v -> return (x, v)) bs
return $ nub (env'' ++ env)
这是我想要评估的测试函数:
test3 :: Expr
test3 = LetRec [ ("even", Lam "x" (If (Var "x")
(Var "odd" `App` (Var "x" `Sub` Con 1))
(Con 1)
))
, ("odd", Lam "x" (If (Var "x")
(Var "even" `App` (Var "x" `Sub` Con 1))
(Con 0)
))
]
(Var "even" `App` Con 5)
编辑:
根据特拉维斯的回答和卢克的评论,我更新了我的代码 使用 MonadFix 实例作为 Error monad。前面的例子现在可以正常工作了!但是,下面的示例无法正常工作:
test4 :: Expr
test4 = LetRec [ ("x", Con 3)
, ("y", Var "x")
]
(Con 0)
评估此示例时,评估器会循环,并且不会发生任何事情。我猜我在这里做了一些过于严格的事情,但我不确定它是什么。我是否违反了 MonadFix 法律之一?
Update: I've added an answer that describes my final solution (hint: the single Expr
data type wasn't sufficient).
I'm writing an evaluator for a little expression language, but I'm stuck on the LetRec
construct.
This is the language:
type Var = String
type Binds = [(Var, Expr)]
data Expr
= Var Var
| Lam Var Expr
| App Expr Expr
| Con Int
| Sub Expr Expr
| If Expr Expr Expr
| Let Var Expr Expr
| LetRec Binds Expr
deriving (Show, Eq)
And this this the evaluator so far:
data Value
= ValInt Int
| ValFun Env Var Expr
deriving (Show, Eq)
type Env = [(Var, Value)]
eval :: Env -> Expr -> Either String Value
eval env (Var x) = maybe (throwError $ x ++ " not found")
return
(lookup x env)
eval env (Lam x e) = return $ ValFun env x e
eval env (App e1 e2) = do
v1 <- eval env e1
v2 <- eval env e2
case v1 of
ValFun env1 x e -> eval ((x, v2):env1) e
_ -> throwError "First arg to App not a function"
eval _ (Con x) = return $ ValInt x
eval env (Sub e1 e2) = do
v1 <- eval env e1
v2 <- eval env e2
case (v1, v2) of
(ValInt x, ValInt y) -> return $ ValInt (x - y)
_ -> throwError "Both args to Sub must be ints"
eval env (If p t f) = do
v1 <- eval env p
case v1 of
ValInt x -> if x /= 0
then eval env t
else eval env f
_ -> throwError "First arg of If must be an int"
eval env (Let x e1 e2) = do
v1 <- eval env e1
eval ((x, v1):env) e2
eval env (LetRec bs e) = do
env' <- evalBinds
eval env' e
where
evalBinds = mfix $ \env' -> do
env'' <- mapM (\(x, e') -> eval env' e' >>= \v -> return (x, v)) bs
return $ nub (env'' ++ env)
This is my test function I want to evaluate:
test3 :: Expr
test3 = LetRec [ ("even", Lam "x" (If (Var "x")
(Var "odd" `App` (Var "x" `Sub` Con 1))
(Con 1)
))
, ("odd", Lam "x" (If (Var "x")
(Var "even" `App` (Var "x" `Sub` Con 1))
(Con 0)
))
]
(Var "even" `App` Con 5)
EDIT:
Based on Travis' answer and Luke's comment, I've updated my code to use the MonadFix instance for the Error monad. The previous example works fine now! However, the example bellow doesn't work correctly:
test4 :: Expr
test4 = LetRec [ ("x", Con 3)
, ("y", Var "x")
]
(Con 0)
When evaluating this, the evaluator loops, and nothing happens. I'm guessing I've made something a bit too strict here, but I'm not sure what it is. Am I violating one of the MonadFix laws?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
当 Haskell 发脾气时,通常表明你还没有清楚地思考问题的核心问题。在这种情况下,问题是:您想要为您的语言使用哪种评估模型?按价值调用还是按需求调用?
您将环境表示为
[(Var,Value)]
表明您希望使用按值调用,因为每个Expr
都会评估为Value< /code> 立即将其存储在环境中。但是
letrec
并不能很好地适应这一点,你的第二个例子表明了这一点!此外,请注意,宿主语言(Haskell)的评估模型会干扰您要实现的语言的评估模型;事实上,这就是您当前在示例中使用的内容:无论其目的如何,您的
Value
都不会被评估为弱头正常形式。除非您清楚地了解您的小表达式语言的评估模型,否则您不会在
letrec
或错误检查工具上取得太大进展。编辑:
有关按值调用语言中
letrec
的示例规范,请查看 Ocaml 手册。在最简单的层面上,它们只允许右侧为 lambda 表达式,即语法上已知为值的内容。When Haskell throws a fit, that's usually an indication that you have not thought clearly about a core issue of your problem. In this case, the question is: which evaluation model do you want to use for your language? Call-by-value or call-by-need?
Your representation of environments as
[(Var,Value)]
suggests that you want to use call-by-value, since everyExpr
is evaluated to aValue
right away before storing it in the environment. Butletrec
does not go well with that, and your second example shows!Furthermore, note that the evaluation model of the host language (Haskell) will interfere with the evaluation model of the language you want to implement; in fact, that's what you are currently making use of for your examples: despite their purpose, your
Value
s are not evaluated to weak head normal form.Unless you have a clear picture of the evaluation model of your little expression language, you won't make much progress on
letrec
or on the error checking facilities.Edit:
For an example specification of
letrec
in a call-by-value language, have a look at the Ocaml Manual. On the simplest level, they only allow right-hand sides that are lambda expressions, i.e. things that are syntactically known to be values.也许我错过了一些东西,但以下不起作用吗?
对于您的更新版本:以下方法怎么样?它按照您的测试用例的需要工作,并且不会丢弃
LetRec
表达式中的错误:Maybe I'm missing something, but doesn't the following work?
For your updated version: What about the following approach? It works as desired on your test case, and doesn't throw away errors in
LetRec
expressions:回答我自己的问题;我想分享我想出的最终解决方案。
正如海因里希正确指出的,我并没有真正考虑清楚评估顺序的影响。
在严格(按值调用)语言中,已经是值的表达式(弱头范式)与仍需要某些计算的表达式不同。一旦我在数据类型中编码了这种区别,一切就都到位了:
与我原来的
Expr
数据类型的唯一区别是,我提取了两个构造函数(Con
和Lam
)转换为自己的数据类型Val
。Expr
数据类型有一个新的构造函数Val
,这表示值也是有效的表达式。对于具有自己数据类型的值,它们可以与其他表达式分开处理,例如
letrec
绑定只能包含值,不能包含其他表达式。这种区别在其他严格语言(如 C)中也存在,其中只能在全局范围内定义函数和常量。
有关更新的评估器函数,请参阅完整代码。
Answering my own question; I wanted to share the final solution I came up with.
As Heinrich correctly pointed out, I didn't really think through the impact the evaluation order has.
In a strict (call-by-value) language, an expression that is already a value (weak head normal form) is different from an expression that still needs some evaluation. Once I encoded this distinction in my data type, everything fell into place:
The only difference with my my original
Expr
data type, is that I pulled out two constructors (Con
andLam
) into their own data typeVal
. TheExpr
data type has a new constructorVal
, this represents the fact that a value is also a valid expression.With values in their own data type, they can be handled separately from other expression, for example
letrec
bindings can only contain values, no other expressions.This distinction is also made in other strict languages like C, where only functions and constants can be defined in global scope.
See the complete code for the updated evaluator function.