如何估算复杂的算法设施需求?
我想了解如何使用一些众所周知的启发式方法有效地估计某些复杂算法的硬件要求。
IE。我想快速估计在合理的时间内或以其他方式破解我的 TEA O(2^32) 或 XTEA O(2^115.15) 需要多少计算机能力:
拥有设施电源对于 1000 x 4GHz 四核 CPU,执行给定算法需要多少时间?
我也对 O(log N) 等算法的其他算法复杂度估计感兴趣
。 布阿
I'd like to understand how to efficiently estimate hardware requirements for certain complex algorithms using some well known heuristic approach.
Ie. I'd like to estimate quickly how much computer power is necessary to crack my TEA O(2^32) or XTEA O(2^115.15) in some reasonable time or other way round :
Having facility power of a 1000 x 4GHz quad core CPU's, how much time would it take to execute given algorithm?
I'd be also interested in other algo complexity estimations for algorithms like O(log N) etc..
regards
bua
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
好吧,所以我想出了这样的事情:
简化CPU时钟与MIPS相同。
有一定数量的指令,例如。 2^115 和带有 ex 的处理器。 1GHz时钟
即:
i = 2^115.15
时钟=1GHz
ipersec=1/10e+9
秒 = i *
python 中的 ipersec:
ex
因此需要 1.4 ^ 18 年来计算它,
因此拥有 1mln 4 核 1Ghz 处理器需要:
需要 3.6 ^ 11 年(~ 3600 mld 年) )
简化版:
2^115.15 = 2^32 * 2^83.15
时钟 = 2^32 ~ 4Ghz
2^83.15 =
检查:
ok, so I'd came up with some thing like this:
Simplifying that CPU clock is this same as MIPS.
having amount of instructions ex. 2^115 and a processor with ex. 1GHz clock
which is:
i = 2^115.15
clock = 1GHz
ipersec=1/10e+9
seconds = i * ipersec
in python:
ex
so it would take 1.4 ^ 18 years to calculate it
so having 1mln 4 cores 1Ghz processors it would take:
it would take 3.6 ^ 11 years (~ 3600 mld years)
simplified version:
2^115.15 = 2^32 * 2^83.15
clock = 2^32 ~ 4Ghz
2^83.15 =
checking:
选择你喜欢的答案:
如果有人如果你真的想要你的 pr0n 收藏,那么打破钥匙扣比打破钥匙要容易得多。
Pick whichever answer you like:
If someone really wants your pr0n collection it is much easier to break the key holder than it is the key.